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ABSTRACT 

This  study was motivated  by  the  att i tude-control problem  from e a r t h  

of a satel l i te  i n  deep  space. The main feature  of t h i s   con t ro l  problem 

i s  the  presence of a large  time  delay i n  the  control   funct ion due t o   t h e  

long  t imes  required  to  transmit  the  control  signals.  Time de lays   in   the  

c o n t r o l   f u n c t i o n   a l s o   a r i s e   i n  many other  types of cont ro l  problems, and 

thus  the  a t t i tude-control  problem i s  merely  used t o   i l l u s t r a t e   t h e  

influence which time delay  has upon system  behavior. It 'is assumed tha t   t he  

time  delay i s  cons tan t   in  magnitude  and i d e n t i c a l   i n  magnitude for   each  

component of the  control  vector.   Linear  systems are considered  through- 

out   this   paper ,   but  it i s  pointed  out  that  much of what i s  said appl ies  

to  non-linear  systems as wel l .  

The most common e f f e c t  of a time de lay   in   the   cont ro l  i s  the  degrad- 

a t i o n  of the  system  behavior  with  respect  to i t s  delay-free  behavior.   This 

i s  demonstrated  by  considering a second-order  problem  with bounded control .  

This  degradation  in  system performance i s  due pr imar i ly   to   the   inherent  

uncont ro l lab i l i ty  of systems  with  control  delays  in  the  t ime  interval 

[ t o ,  to + t ] where to i s  t h e   i n i t i a l  time  and td i s  the magnitude 

of the  time  delay. A theorem t o   t h i s   e f f e c t  i s  presented. 
d 

Optimal control  o f  systems  with  t ime  delay  in  the  control i s  discussed 

by f i r s t  considering  the  analogous  delay-free  system and then   u t i l i z ing  

the   r e su l t s  of t he   con t ro l l ab i l i t y   d i scuss ion   t o  pose an  analogous  optim- 

i za t ion  problem for  time-delay  systems. It i s  shown that   the   necessary 

condi t ions   for   op t imal i ty  of t ime-delay  systems  are  identical   to  those of 

the  analogous  delay-free  system  after  time to + td. The s ignif icance 

of t h i s   f a c t  i s  that   the   opt imal   control  l a w  for  the  time-delay  system i s  

a funct ion of the  predicted state, x ( t  + td), instead of the  present 

s t a t e ,   x ( t ) .   S e v e r a l  examples are  considered  in  order  to  demonstrate 

these  ideas.  
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CHAPIER I 

INTROlXTCTION 

1.1 PROBLEM FORMULATION 

Small time de lays   in   the   cont ro l   a re   p resent   in   a lmost   every   cont ro l  

problem due t o   t h e   f i n i t e  t ime  required  to   t ransmit   the   control   s ignal  

from one part of the  system to  another.  Various  approximate methods are 

ava i lab le   to   handle   these  small de lays  when it appears   that   they have 

a s ign i f i can t   e f f ec t  upon system  behavior.. The e f f e c t  of  the  delay is  

usua l ly   s ign i f i can t  when i t s  magnitude i s  appreciable compared t o   t h e  

natural   per iod of o s c i l l a t i o n  of the  plant   being  control led.  Then the  

approximate methods a r e  no longer   appl icable  and a d i f f e ren t  method o f .  

ana lys i s  must be used to  study  these  systems. This paper  presents  the 

r e s u l t s  of a study  conducted on the  control  of l i n e a r  systems  which 

possess  large  t ime  delays  in  the  control  function. 

The c l a s s  of  systems with  t ime  delay  considered  in   this   paper  i s  

r e s t r i c t e d  by the  following two assumptions: 

Assumption 1. 

The time  delay i s  f i x e d   i n  magnitude during  operation of the  control  

function. 

Assumption 2. 

Each component of a multi-dimensional  control  function  possesses 

a t ime  delay  ident ical   in  magnitude to   every  other  component. 

An example of a l i n e a r  system  with  time  delay, which a r i s e s   na tu ra l ly  

in   the   aerospace   f ie ld ,  i s  t h a t  of the   l inear ized  remote control  from 

e a r t h  of a deep-space s a t e l l i t e .   I n   p a r t i c u l a r ,  it may be des i r ab le   t o  

con t ro l   t he   a t t i t ude  of an unmanned vehicle,  upon which some detect ion 

device,  such as a telescope, i s  mounted. Control l ing  the  vehicle 's  

a t t i t u d e  from ear th   a l lows  greater  freedom for explorat ion and  reduces 

onboard  computer  requirements. One can  easi ly   formulate   this   control  

problem  such t h a t  Assumptions (1) - (2) are   sat isf ied.   This   s tudy 

i s  highly  motivated  by  the above a t t i t u d e   c o n t r o l  problem, but   the  theory 

presented  here is  appl icable   to   any  problem  invo1ving.a  time  delay  in 
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the cont ro l  as long as the above  assumptions are s a t i s f i e d .  

A more precise  formulation  of the cont ro l  problem i s  now presented. 

Assume t h a t   t h e  system  dynamics are spec i f ied  by the following set of n 

l inear ,   f i rs t -order ,   ordinary  different ia l -difference  equat ions:  

where 

x ( t )  i s  the  nxl s t a t e   vec to r ,  

A ( t )  i s  a nxn matrix, 

B ( t )  i s  the  nxm distribution-of-control  matrix,  

u ( t - td )  i s  the mxl control  vector,   each component of 

which i s  delayed  by the constant time delay t 
d' 

A block  diagram of t h i s  system, as it p e r t a i n s   t o   t h e   a t t i t u d e   c o n t r o l  

problem  discussed  above, i s  shown i n   F i g u r e  1.1. It i s  noted  here  that  

t he   s a t e l l i t e   a t t i t ude   equa t ions  of  motion  can be wr i t t en   i n   t he  form  of 

Equation (1.1) on ly   a f t e r   l i nea r i z ing  the original  non-linear  equations 

of motion  and neglecting a l l  inhomogeneous terms  ar is ing from gravi ty  

gradient  torques. This l a t t e r   s t e p  i s  j u s t i f i e d  by t h e   f a c t  that the 

s a t e l l i t e  i s  i n  deep  space where gravi ty   gradient   torques  are  assumed 

negl igible .  

In Figure 1.1, r (* )  and e ( = )   a r e  nxl vector   funct ions o f  time. 

The reference  signal,  r ( * ) ,  i s  the  desired  value of the state. Since 

a time of  magnitude tal2 i s  required  to   t ransmit   the   value of the  

s t a t e  from t h e   s a t e l l i t e   t o   e a r t h ,  r ( 0 )  must be  delayed for a time 

i n   o r d e r   t o  form  the  error   s ignal  e (t-td/2). The control ler   formulates  

a cont ro l   s igna l  on ear th ,  knowing the e r r o r   i n   t h e  state a t  a time t 
d 2  

e a r l i e r ,  and then  t ransmits  t h i s  s igna l   back   t o   t he   s a t e l l i t e ,   r e su l t i ng  

in   another   delay of magnitude td/*. 

t ions ,  such that e ( - )  goes t o   z e r o   i n  some desirable   fashion.  When 

r (* )  i s  ident ical ly   zero,  t h i s  control  problem  reduces t o  a regulator  

control  problem. If r (  0 )  i s  constant o r  slowly  varying,  the  solution 

td/2 

The problem i s  to   cons t ruc t  a con t ro l l e r ,   sub jec t   t o   ce r t a in   r e s t r i c -  

2 
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Figure 1.1. Block Diagram for a Deep-Space Atti tude-Control Problem 
Assuming Linear  Vehicle Dynamics. 



of  the  regulator problem i s  an  obvious  candidate for   the   cont ro l   func t ion  

and i s  thus   the   ob jec t ive   in   th i s   s tudy .  

The t o t a l   d e l a y   i n   F i g u r e  1.1, between the  measurement cf the state, 

x ( t ) ,  and the   ac t ion  of t he   r e su l t i ng   con t ro l   s igna l ,  i s  of magnitude 

td. One f ina l   s imp l i f i ca t ion  of the  system shown in   F igu re  1.1 w i l l  be 

made using this  f a c t .  The two de lays   in   F igure  1.1 a r e  combined i n t o  a 

s ingle   delay of magnitude td. The resulting  block  diagram i s  shown i n  

Figure 1.2. 

The s impl i f ica t ion  of the  original  system made in  Figure  1.2 removes 

the  direct   analogy between the  block  diagram  and  the  deep-space  attitude 

cont ro l  problem. The control ler   design,  however, can be constructed 

from e i t h e r  of these  systems,  even when r(*) i s  not  identically  zero.  

I n  pa r t i cu la r ,  the cont ro l le r   in   F igure  1.2 can  be  used in   F igu re  1.1, 

after a time shif t  of  magnitude  such that the  two systems  have 

identical  behavior.  Designing the c o n t r o l l e r   f o r  the system shown i n  

Figure 1.2 i s  thus   su f f i c i en t   fo r   so lv ing   t he  deep-space a t t i tude-cont ro l  

problem. 

%/2 , 

The assumption that the  system of i n t e r e s t  i s  l i n e a r   i n   t h e   s t a t e  

and cont ro l  i s  most convenient i n   t he   d i scuss ion  on con t ro l l ab i l i t y .  

It i s  not   essent ia l   in   the   d i scuss ion  on system  optimization.  Possible 

general izat ions of the  system shown in   F igure  1.2 a re   cons idered   in  

Chapter VI. 

1.2 PREVIOUS  RESULTS 

The a t t i t u d e   c o n t r o l  problem  discussed in   Sec t ion  1.1 is  the 

primary  motivation for t h i s  study.  Sabroff [1]* presents  a sound case 

for earth-based  control  of  satell i tes  in  deep  space,  assuming the   cont ro l  

problem created by the time delay can  be  solved. Adams [2]  and Martin  [3] 

considered  the  problem of  remote control ,  from earth, of a lunar  unmanned 

*Numbers in   b racke t s ,  [ - 3 ,  refer to   references  given a t  the end 
of this  paper. 
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Figure 1.2. Simplified Block Diagram of System Shown i n  Figure 1.1. 



surface  vehicle.  Both  of these   s tud ies  were experimental  and  revealed 

some of the  problems created by time de lays ,   bu t   ne i the r   s a t i s f ac to r i ly  

so lves   t h i s   con t ro l  problem.  Flcgge-Lotz [4]  considered the e f f e c t  of 

t ime  delay  resul t ing  f rom  relay  imperfect ions  in  bang-bang cont ro l  problems. 

The resu l t s   ob ta ined ,  however, are not  valid when the  time delay i s  la rge ,  

even for   the  s imple  control  problems  considered  there. 

Fu l l e r  [ 5 ]  summarizes the   r ecen t   t heo re t i ca l  developments i n  the 

optimal  control  of  systems with t ime  de lay   in  the control.  The l i s t  of 

references  given  by  Fuller i s  f a i r l y  complete  and w i l l  not be repeated 

here. Very b r i e f ly ,  it can be said t h a t  most researchers of optimal 

cont ro l  of systems with a control   delay have  concluded that the  optimal 

cont ro l  l a w  must be based upon the   p red ic ted   fu ture  of t h e   s t a t e .  Some 

researchers  recognized the f a c t   t h a t  i f  an  optimal  feedback  control l a w  

i s  desired,  it must have a func t iona l  dependence upon the cont ro l   h i s tory  

over a f i n i t e  span of time. This segment  of the   cont ro l   h i s tory  i s  termed 

the   "s ta te  of the  delay" by Ful le r .  A s  Ful le r   po in ts   ou t ,  most of the "optimal" 

feedback  control laws der ived   in  the l i t e r a t u r e   a r e ,   i n   f a c t ,  sub-optimal 

s ince   the   "s ta te  of the  delay" was not  properly  accounted  for  by the authors.  

Ful ler   recognized  the  basic   re la t ionships  between  optimal  control laws 

for  t ime-dealy and  analogous  delay-free  systems.  Without  considering  the 

necessary  condi t ions  for   opt imal i ty ,  he conjectured that  the  optimal  feed- 

back control  law for the  time-delay  system i s  the same as the  optimal  feed- 

back cont ro l  law for the  delay-free  system when based upon the  predicted 

s t a t e ,   x ( t  + td). He concerns  himself with bang-bang control  problems 

and the  conjecture  i s  t rue  i f  td i s  r e s t r i c t e d   i n  magnitude. Ful le r   d id  

not  recognize  that  i f  td i s  su f f i c i en t ly   l a rge ,  an optimal  feedback 

discontinuous  control law cannot  be  obtained  for  the  time-delay  system, 

even i f  it i s  known for  the  delay-free  system. Most of F u l l e r ' s   a n a l y s i s  

presupposes that  the   cont ro l  law for  the  delay-free  system i s  known 

e x p l i c i t l y .  This i s  h igh ly   r e s t r i c t ive  and, us ing   h i s   ana lys i s  when t h i s  

information i s  ava i lab le ,   reduces   the   ins ight   in to   the   cont ro l  problem one 

obtains by  studying  the  control of the  delay-free  system. It should also 

be noted  that   Fuller 's   optimal  feedback  control law i s  not  optimal a t  a l l  

when an unknown disturbance  acts on t h e  system.  This  fact i s  t r u e  for any 

optimal  control law designed  for a system  with  time  delay  in  the  control. 



Ichikawa [6] approached t h i s   c o n t r o l  problem  from a d i f fe ren t   po in t  

of view. He considered a fa i r ly   genera l   op t imiza t ion  problem f o r  a non- 

l i n e a r  system  with  delays in   bo th   t he   con t ro l  and  the  s ta te .  The 

performance c r i t e r i o n  was completely  general  and  end-point  equality 

cons t ra in ts  were considered. By w r i t i n g   t h e   f i n i t e  number of difference- 

d i f fe ren t ia l   equa t ions  as a n   i n f i n i t e  number of ord inary   d i f fe ren t ia l  

equations  and  then  applying  Pontryagin's maximum principle,   he  obtains 

a set of necessary  condi t ions  for   opt imal i ty .  These conditions  lead 

t o   c o n t r o l l e r s  which are functionally  dependent upon the  state of  the 

delay.  Considering  only  the  delay  in  the  control,  the  necessary  conditions 

for   op t imal i ty   der ived  by  Ichikawa  can be eas i ly   der ived ,   for  a la rge  

c l a s s  of problems,  without  considering  any  infinite  dimensional  system 

of ord inary   d i f fe ren t ia l   equa t ions .  .Also, applying  his  necessary  condi- 

t ions   for   op t imal i ty   to   ob ta in   an   op t imal   cont ro l  l a w  does  not  allow one 

t o  make fu l l  use  of  his knowledge about  the  optimal  control of the 

analogous  delay-free  system.  Nevertheless, it is  i n t e r e s t i n g   t o  compare 

the  necessary  conditions  obtained  here,  for a more r e s t r i c t e d   c l a s s  of 

problems,  with  those of  Ichikawa. 

1.3 ORGANIZATION OF WORK 

Most of  the  analysis   presented  in   this   paper   per ta ins   to   opt imal  

cont ro l  of l i n e a r  systems  with  time  delayin  the  control.  In  Chapter 11, 

however, the  general   effect  of  time  delay in   t he   con t ro l  upon system  behavior 

i s  discussed. The "state of the  delay" i s  defined and an  analogy t o   t h e  

''state!' i s  given  which  adds  insight  into  the  control  problem. A second- 

order  system  with bounded cont ro l  i s  then  considered  in   order  to demonstrate 

the  adverse  effects  which a time  delay i n   t h e   c o n t r o l  can  have upon system 

behavior.  Both  linear  and minimum-time switching  functions are considered. 

The minimum-time problem for the  second-order  system i s  reconsidered i n  

Chapter V. P t  i s  emphasized here  that   these  simple examples are   presented 

t o   i l l u s t r a t e   b a s i c  features of control   delay and are   not   intended  to  

solve more complicated  problems  such as the   6 th -o rde r   s a t e l l i t e   a t t i t ude -  

cont ro l  problem. 



The remainder of the  report   deals   with  general   opt imal   control  of 

time-delay  systems. In   Chapters  I11 and I V  a set of necessary  conditions 

for optimali ty  are obtained.  Implementation  of  these  necessary  conditions 

i s  discussed  in  Chapter V. 

The sole  purpose of  Chapter I11 i s  t o   p r e s e n t   t h e  basis upon which 

a time-delay  analogue of the  delay-free system and optimization  problem 

i s  constructed.   Control labi l i ty   requirements   are   discussed and a f a i r l y  

general   optimization problem i s  posed. The necessary  condi t ions  for  

optimality of the  delay-free  system  are  then  presented  without  proof.  

Except for several   modifications of the   def in i t ion  of con t ro l l ab i l i t y ,  

which  were made so tha t   t he   de f in i t i on   cou ld   a l so  be appl ied  to   t ime-  

delay  systems,  the results of th i s  chapter are wel l  known. 

The s t ruc tu re  of  Chapter I V  p a r a l l e l s  that of Chapter I11 except 

now time-delay  systems are considered.  Controllabil i ty  plays  an  important 

ro l e   i n   t he   d i scuss ion  of optimal  control  of  time-delay  systems,  and i s  

therefore  considered  in some d e t a i l .  The necessary  conditions  for  optimal- 

i t y ,   fo r   t he   op t imiza t ion  problem  posed i n  this  chapter,  are obtained 

from the  necessary  condi t ions  for   opt imal i ty  of the analogous  delay-free 

system  given i n  Chapter 111. These conditions are a l so   de r ived   i n  

Appendix A by means  of the calculus  of var ia t ions .  It was f e l t ,  however, 

tha t   re la t ing   the   de lay- f ree  and the  time-delay  problems would give more 

in s igh t   i n to  how t o   u t i l i z e   t h e   s o l u t i o n  of one problem to   ob ta in   t he  

so lu t ion   to   the   o ther  problem. 

The ca lcu la t ion  and  implementation  of  optimal  control laws from  the 

necessary  conditions  for  optimality  given  in  Chapter I V  i s  the  subject  of 

Chapter V. The general   re la t ionships  between the   cont ro l  laws fo r   t he  

delay-free  and  time-delay  systems  are f i rs t  discussed. Two examples a r e  

then  considered. The f i rs t  problem  demonstrates how the  necessary  condi- 

t ions  for   opt imal i ty   can be  used d i rec t ly   to   ob ta in   an   op t imal   cont ro l  l a w  

for  an  nth-order  system w i t h  unbounded control  and a quadratic performance 

index. The second  problem shows how the  delay-free  solution  can be 

ut i l ized  to   solve  the  t ime-delay  analogue of the  second-order, minimum- 

set t l ing-t ime example discussed  in  Chapter 11. 

a 



Final ly ,   the   basic   conclusions drawn i n   t h i s  work are summarized 

i n  Chapter VI, and some possible   general izat ions are suggested. 

9 



CHAPI'ER I1 

EFFECT  OF TIME DELAY UPON SYSTEM BEHAVIOR 

2.1 THE STATE OF THE DELAY 

The presence of a la rge  t i m e  de l ay   i n   t he   con t ro l   s igna l  of a l i n e a r  

system  has a s ign i f i can t   e f f ec t  upon the  dynamics  of the  system.  This 

e f f e c t  i s  l a r g e l y   a t t r i b u t e d   t o   t h e   e x i s t e n c e  of a quant i ty  which 

A. T. Fu l l e r  [ 5 ]  has  termed  "the  st,ate of the  delay".  This  terminology 

i s  qui te   appropr ia te .   Jus t  as knowledge  of the state, x ( t ) ,  i s  

necessary  in  order  to  completely  specify a delay-free  system,  the  "state 

of the  delay" must be known, i n   a d d i t i o n   t o   x ( t )  , in   o rder   to   comple te ly  

specify a system  with a de lay   in   the   cont ro l .  

It is  assumed tha t   t he  system  dynamics are   given by  Equation (1.1) and 

t h a t   t h e   i n i t i a l  state,  x(to) = x i s  specif ied.  The so lu t ion  of 

Equation (1.1) may then be  deduced from the   so lu t ion  of the  analogous  delay- 

free  equation  (Equation (1.1) with td = 0) :  

0' 

were ' ? ) ( m y  a )  is the   s ta te   t rans i t ion   mat r ix   for   Equat ion  (1.1). Now, 

U( ) is  the  control   s ignal   generated by the   cont ro l le r   in   F igure  (1.2) 

and  hence i s  i n i t i a t e d  a t  time to. Since   th i s   s igna l  i s  delayed a 

time t the   con t ro l   i n i t i a t ed  a t  time won 't be " f e l t  " u n t i l  time 

t + td. This i s  eas i ly   seen  by evaluating  Equation (2.1) a t  t = to + td 

and  changing va r i ab le s   i n   t he   i n t eg ra l :  

d' 

0 

r o  t 

Thus, the  funct ion  u(0) ,uc[ to  - td,to], i s  needed i n   o r d e r   t o   c a l c u -  

l a t e  X(to + td), and  hence the   s t a t e ,  dt) ,  f o r  any t > to. Note 

t h a t   t h i s   f u n c t i o n  i s  not   par t  of the  control   funct ion.generated by the  

cont ro l le r   a f te r   t ime t = to. 
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!Be state of the delay may now be  defined i n  terms  of  the above 

notation. 

lkf in i t ion   2 .1  

The state of the de1ay.a-L time t of the  system  described  by 

Equation (1.1) is the   vec tor   func t ion  u ( T ) , o E [ ~  - td,t]. If t h e   i n i t i a l  

time i s  to, t h e   i n i t i a l   s t a t e  of the  delay,  %(T), T E [ t o , t o  + t a l ,  1s 

given  by 

Thus,  from Defini t ion 2.1, the   s ta te   o f   the   de lay  i s  merely  that  

portion  of  the  control  history  generated  during  the last td un i t s  of 

t ime.  Fuller [5]  l i kens  systems  with a con t ro l   de l ay   t o  a magnetic 

tape moving a t  constant  speed  between two r e e l s  upon which da ta ,   u ( t ) ,  

i s  recorded a t  one r e e l  and  from  which d a t a ,   u ( t  - td), i s  erased a t  the 

o ther   ree l .  The s t a t e  of the  delay a t  time t i s  then  represented  by a l l  

of   the  data  on the  tape a t  time t. This  analogy may be he lpfu l   in   v i sua l -  

i z ing   t he   e f f ec t  which a delay  in   the  control   has  upon system  behavior. 

The f a c t   t h a t  one cannot a l ter  the  data  on the  tape,  once recorded,  suggests 

t h a t  systems  with a control   delay  are   uncontrol lable   during  the  t ime 

i n t e r v a l  [t,t + t a l .  
Before  consider ing  control labi l i ty  and optimal  control,  a second- 

order  system i s  invest igated  in   order   to   demonstrate   the  effect  which a 

control   delay,  and i t s  s ta te ,   has  upon system  performance. 

2.2 SECOND-ORIER ~ ~ - EXAMPLE W I T H  BOUNDED CONTROL 

A second-order  system  with  control  delay i s  cons idered   in   th i s  

sect ion.  L e t  e ( t )  be a sca l a r   e r ro r   s igna l  which satisfies the 

following  second-order  differential-difference  equation: 

In   Equat ion ( 2 4 ,  time t has  been  non-dimensionalized  with  the 

natural   frequency of the  system. Thus both t and td a re  measured 

in   rad ians .  Also, U( 0 )  is  the   sca la r   cont ro l   func t ion  and r( i s  the 
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pos i t ive  damping coef f ic ien t  of t he  system.  Since e ( t )  is, designated 

as an   e r ro r   s igna l ,   t he   con t ro l  problem i n   t h i s  example i s  a regula tor  

problem. 

Assume t h a t  the state, (e ( t )  , d ( t ) ) ,  i s  z e r o   p r i o r   t o   t h e   a c t i o n  

of an  impulsive  disturbance upon the  system a t  time t . This d i s tu r -  

bance gives  the  system a non-zero i n i t i a l   s t a t e ,  (eo,.,), and s ince 

u( t  - td) = 0, t c [ t o , t o  + td], t h e   i n i t i a l   s t a t e  of the  delay i s  

ident ical ly   zero.  

? 

Now assume t h a t  the magnitude  of the   cont ro l  i s  bounded: 

t 2 to 

where N i s  a posi t ive  constant .  This control   constraint   suggests   the 

p o s s i b i l i t y  of choosing u ( - )   t o  have a bang-bang s t ruc ture .  This type 

of con t ro l l e r  i s  not   only  easi ly  implemented, bu t   a l so   p roves   to  be optimal 

i n  a la rge   c lass  of optimization problems. We shall assume, therefore ,  

that  the  control  can be spec i f ied  by 

u ( t  - td) = -Nsgn[E(e(t - td),&(t - t , ) ) ] ,  t r ' t  + td 
0 

(2.6) = o ,  t o s t < t  + t d  

JxI 

0 

where  sgn x = - and f ( - , - )  i s  the swi t ch ing   func t ion   i n   t he   s t a t e  

variables.   Wrltlng u ( * )  i n  t h i s  way limits th i s  discussion  to  feedback 

control  laws. 

X 

The t r a j e c t o r i e s  of  Equation (2.4), using  the  control  l a w  in  Equation 

(2.6), are logarithmic  spirals  about ( fN or 0,O) i n   t h e  (e,:)-phase 

plane when an  oblique  coordinate  system i s  used [ T I .  This  coordinate 

system,  a long  with  the  necessary  def ining  re la t ionships   for   the  t ra jector ies ,  

i s  shown in   F igure  2.1. 

Thus,  from the  def ining  equat ions  in   Figure 2.1, i t  i s  seen that r 

i s  a converging  logarithmic  spiral  when 5 is pos i t ive  and CY var i e s  

l i nea r ly   w i th  the dimensionless  time. Note tha t   s ince  ncU = - 4- A t ,  

the  dimensionless time delay td resul ts   in   an  angular   displacement   in  

the  phase  plane  of  magnitude 4- td radians.  These f a c t s  are used 

below i n  the construct ion of t r a j e c t o r i e s   f o r  two par t icular   switching 

functions.  
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D E F I N I N G  EQUATIONS 

- E ( t )  + 2(6(t) + e ( t )  = or o 

- cos y =  -(, s i n  y = ,,/3 

- a = 6 - J Z t  

- Determined by e ( t o ) , & ( t o )  

Figure 2.1. Oblique  Coordinate  System  and  Defining  Equations for t h e  
Trajectories  of  the  Second-Order Example. 
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2.2.1 LINEAR SWITCHING FUNCTION 

m e  most simple  switching  function  to implement in   the   cons t ruc t ion  

of bang-bang con t ro l l e r s  is  the  l inear   switching  funct ion:  

f [ e ( t ) , & ( t ) ]  = e ( t )  + k l g ( t ) ,  t 2 to (2.7) 

where kl i s  a scalar   constant .  When k > 0, th i s   swi tch ing   func t ion  

causes   the   t ra jec tor ies  of the  delay-free  system  to  converge  to  the  origin, 

ending i n  a cha t t e r  motion when the   r e l ay  i s  non-ideal [4] .  

1 

The introduct ion of a time  delay, td, in to   the   cont ro l  l a w  causes 

the  switching  funct ion  to  become 

f [ e ( t  - t d ) , g ( t  - t , )]  = e ( t  - td) + k16(t - td), t r t  + t d  
0 

( 2  8 )  

when the  command curve i s  given  by  Equation (2.7). The e f f ec t  of the  time 

delay i s  a ro t a t ion  of the  switching  curve  in  Equation (2.7) and a d iv is ion  

of the  s ingle   switching  curve  into two paral le l   switching  curves .   This  i s  

c l ea r  when the  switching  function  in  Equation (2.8) i s  wr i t ten   in   t e rms  of 

( e ( t ) , 6 ( t ) )  [ 4 ,  Eq. 138 i n  modified  form]: 

where 
(2.10) 

Also, it i s  shown i n  [4]  t h a t  i f  a per iodic  motion ex is t s ,   then   the   ha l f -  

period, T of t h i s  motion i s  the   so lu t ion  of the  following  transcendental  

equation: 
P' 

[ s in(T( t ,  - 7 P ) + y )  + q s i n v ( t d  - Tp) 1 + exp-'TP[sin(vtd + 7 j 

+ $sinTtd] = vexp-'td.[cosTT + cosh(7 ] 
(2.11) - 

P P 
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and the  switch  points  of t h i s   p e r i o d i c  motion, 6 ), are given by 

s inv T P 
- 

(2.12) 

(2.13) 

It i s  important   to   note   here   that   the  above r e su l t s   a r e   va l id   on ly  

when a double-command does  not  occur  during  the  motion  of  the system.* 

A double-command occurs when a second command i s  given  before  switching 

for the  f i r s t  command can  be  executed.  This w i l l  always  happen when td 
i s  very  large (td > > r( rad). Martin  [3]  considered  control of t h i s  

system  by means of reverse  switching ( +Nsgnf(*, - )  in  Equation  (2.6) 

instead of -Nsgnf(*,-)) .  When t h i s   t y p e  of switching i s  used,  double 

commands can  occur for any s i z e  td if  t h e   i n i t i a l   c o n d i t i o n s   f o r   t h e  

t r a j e c t o r y   l i e   i n  a cer ta in   reg ion  of the  phase  plane. When double 

commands occur,  Equation  (2.12)  and  Equation  (2.13) s t i l l  give (ep,Gp) 

f o r  a per iodic  motion but  Equation (2.11) f o r  T i s  replaced  by 
P 

[ s i n ( v ( t d  - T ) + 7) + klsinv(td - T ) ]  + exp- 'b   [ s in(v td  + r>+ kl s i n   v t d ]  
P P 

= 2ex-p P[ COSVT + c0shC.c ] [ s i n ( v ( t d  - T ~ )  + y )  
- 6 T  - 

P 

Also, the  equation for the  switching  curve i s  a l t e r e d   t o  become 

f [ e ( t  - t , ) ,e(t  - t,)] = e( t ) [ s in(Gt ,  + 7 )  + klsinGtd] (2.15) 

-&( t ) [$s inGtd  - y )  + s invtd]  T sgn(f[e( t ) ,G(t)])  

(continued) 

*This f a c t  w a s  overlooked i n  [41. 
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+ % s i n  

+ 5 s i n  

where 8 is the  normalized time elapsed after the  second command i s  

g iven   un t i l   swi tch ing   for   the  f i rs t  command i s  executed.  This  quantity i s  

a f u n c t i o n   o f   t h e   i n i t i a l   s t a t e  of  the  system and thus  .Equation (2.15) 

does  not  give a feedback  representation of the   swi tch ing   po in ts   for   th i s  

problem. The derivations  of  Equation  (2.14)  and  Equation  (2.15)  are  quite 

tedious,   but  follow  the  straightforward  approach  used  to  derive  Equation 

(2.9)  and  Equation  (2.11) i n  [4] .  
Example trajectories  having  double commands as t h e   r e s u l t  of a la rge  

time  delay and as the   r e su l t  of reversed  switching  are shown in  Figure  (2.2) 

and Figure  (2.3),  respectively. The command poin ts   s re   l abe led  C and  the 

corresponding  switch  points  are  labeled S The trc j e c t o r i e s   f o r   t h e  

analogous  delay-free  system,  possessing  the same i n i t i a l  state, a re   i nd i -  

cated  by  the  dashed  l ines  in  these  f igures.  It i s  observed that the  

presence of double commands inval idate   the  expression  for   the  switching 

curve i n  Equation  (2.9).  Equation  (2.15) i s  ver i f ied   on ly  after a lengthy 

calculat ion.  Also note,   particularly  in  Figure  (2.3),   that   double commands 

can   r e su l t   i n   t r a j ec to r i e s   w i th   h igh ly   undes i r ab le   p rope r t i e s .   Fu r the r -  

more, t he  sequence of switch  points  along a t r a j ec to ry   w i th  double commands 

can  be  determined  only  in  an  open-loop  sense  since  the  sequence i s  highly 

s e n s i t i v e   t o   t h e   i n i t i a l   s t a t e .   T h i s   i n i t i a l  state sens i t i v i ty   appea r s   i n  

the  quant i ty  6 i n  Equation  (2.15).   Trajectory  design  for a given 

i n i t i a l   s t a t e  i s ,  therefore ,   ex t remely   d i f f icu l t .  Double commands should 

be avoided  whenever  possible.* 

i 

i' 

NOW assuming the  non-existence of  double commands, t h e   v a l i d i t y  of 

the  expression  for  the  switching  curve  in  Equation (2.9), and the  conditions 

for   per iodic  motion i n  Equations  (2.11)-(2.13), i s  demonstrated in   F igure  (2.4) 

and  Figure  (2.5).  Figure  (2.4) shows an example t r a j e c t o r y  which has desirable  
propert ies  when td i s  zero  but  which  ends  in a large  amplitude l i m i t  

SCThe remarks made f o r  double commands are equal ly   va l id   for   mul t ip le -  
commands of any  order. 
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u=+N 

Figure  2.2. Example T r a j e c t o r i e s  f o r  Second-Order  System  with Damping 
Coef f i c i en t  5 = 0.2 U s i n g  a Linear  Command Curve (k = 
1.0) : Double Commands  Due t o  Large Time Delay. 1 
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I 
"---+ 

u=+N 

f (e ,6)=0 
k,= 1.0 

Figure 2.3. Ekample T r a j e c t o r i e s  for Second-Order  System  with 5 = 0.2 
Using a Linear  Command Curve (k = 1.0)  : Double Commands 
Due t o  Reversed  Switching. 1 
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Figure  2.4. Example T r a j e c t o r i e s  for Second-Order  System  with f = 0.2 
Using a Linear  Command Curve (k = 1.0) :  Single  Commands. 1 
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u=+N 

Figure 2.5. Example  Trajectories  for  Second-Order  System  with 5 = 0.2 
U s i n g  a Linear  Command  Curve (k = -1.0) : Single  Commands. 1 I 

~ 
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cycle  about the o r i g i n  when td i s  large.   For  the  case shown i n  

Figure (2.4), appl ica t ion  of Equations (2.11) - (2.13) gives T 156' 
and (e,,;,) = (f1.83N,f1.78N). Similar ly ,  T 200 and (e ,e ) = 

(f2.78N, T. $N) f o r   t h e   t r a j e c t o r y  shown in   F igu re  (2.5). This latter 

l imi t   cyc le  i s  l a r g e r   i n  amplitude  than  the limit cycle  obtained  with 

no time  delay.  This i s  a consequence of   the   d i scont inui ty  of the 

swi tch ing   l ine  a t  the   o r ig in  caused  by  the  delay in   t he   con t ro l .  Note 

t h a t   t h e   t r a j e c t o r i e s  shown in   F igu re  (2.5) are similar to   those  obtained 

by  using  reverse  switching,  posit ive and  no time delay.. It should 

also be  notea.   that  as long as td i s  non-zero the  s . teady-state motion of 

the  system i s  a f i n i t e  amplitude limit cycle. 

0 p .  
P P P  

kl , 

The i n t e n t  of t he  above  examples was t o  show the   e f f ec t  which a 
t ime  delay  in   the  control   s ignal   has  upon t h e   t r a j e c t o r i e s  of  the  second- 

order  system when a l i n e a r  command funct ion is  used.  Similar  discussions 

can be conducted fo r   o the r  command func t ions ,   r e su l t i ng   i n   mny  of  the 

same conclusions drawn from t h e  above  examples. The presence of a f i n i t e  

amplitude l i m i t  cycle,  and generally  undesirable  behavior  in  the  neighbor- 

hood of the   o r ig in ,   a re   charac te r i s t ics  of t ra jector ies   that   t ime  delays 

in   t he   con t ro l   c r ea t e .  One o ther  command funct ion i s  considered  in   the 

next  section  since it w i l l  be re levant   in   the   d i scuss ion  on optimization, 

and since it further  demonstrates  the  effects  caused by  time  delays. 

2.2.2 TIME SWITCHING FUNCTION  FOR A DELAY-FFlEE  SYSTEM USED FOR 
A SYSTEM WITH DELAY I N  THE CONTROL 

Bushaw [8] determined  the  switching  function  which  gives minimum 

t ime  t ra jec tor ies  from  an i n i t i a l  state t o   t h e   o r i g i n   f o r   t h e  second- 

order example (Equation (2.4)) with  td equal   to   zero.  It i s  d i f f i c u l t  

to   express   this   switching  funct ion,  f (e( t )  , d ( t )  ) , e x p l i c i t l y .   I n   t h e  

(e, i)-phase  plane,   the  switching  function i s  constructed from a sequence 

o f loga r i thmic   sp i r a l  segments  having centers   ly ing  on the  e-axis.   For 

the  special   case of zero damping, t h e   s p i r a l  segments are   semi-circles   of  

constant  radius.   This  case i s  i l l u s t r a t e d   i n   F i g u r e  2.6 and  Figure 2.7. 

Example t r a j e c t o r i e s  of the minimum t ime  so lu t ion   to   the   cont ro l  

problem for  the  delay-free  system  are shown by  dashed l i n e s   i n   F i g u r e  2.6 

and  Figure 2.7. Since { = 0.0 in   t hese   f i gu res ,   t he   t r a j ec to r i e s   a r e  
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u = - N  td = 7 RAD. 7r 

SWITCHING CURVE 
FOR t d = O  

u = + N  
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u = - N  
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LIMIT 
CYCLE 6 
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1- 
\ 

u = + N  

Figure 2.7. Sample  Trajectories for a  Second-Order  Example  with  Zero 
Damping  Using  Bushaw's  Minimum-Time  Switching  Curve:  Double 
Commands. 
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composed of  circular  arcs,   centered  about (fN,O)*. Also shown i n   t h e s e  

f i g u r e s   a r e   t r a j e c t o r i e s  which r e s u l t  when t h i s  minimum time switching 

funct ion i s  used as a command function  for  the  second-order example with 

time  delay. A double-command t r a j e c t o r y  i s  shown in   F igu re  2.7, whereas 

only  single commands occur on t h e   t r a j e c t o r i e s  shown in   F igu re  2.6. A 

finite-amplitude l i m i t  cycle i s  reached in   F igu re  2.6 and divergent  motion, 

which poss ib ly   r e su l t s   i n  a very  large-amplitude l i m i t  cycle,  i s  the 

consequence  of t he  time delay   in   F igure  2.7. I n   b o t h  of these  examples, 

the  introduct ion of t ime  delay  in   the  control   has   drast ical ly   a l tered  the 

behavior of the  system  t ra jector ies .  The cont ro l  l a w  must, therefore ,  

be  a l tered  in   order   to   dupl icate   the  delay-free  system  behavior  when time 

delay i s  present.  

This example w i l l  be  considered  again  in  Chapter V, following  the  dis-  

cussion on optimal  control  in  Chapter I11 and  Chapter I V .  A t  that point  

the  switching  logic  w i l l  be  presented which gives minimum t ime  t ra jec tor ies  

for  the  second-order example with  time  delay,  assuming  only  single commands 

occur. 

*See the  Defining  Equations  in  Figure 2.1. 
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CAAPTER I11 
OPTIMAL CONTROL OF DELAY-FRFE LINEAR SYSTEMS 

3.1 SYSTEM DESCRIFTION 

The system  of i n t e r e s t   i n   t h i s   c h a p t e r  i s  described  by  the  following 

set of n l i nea r ,   f i r s t -o rde r ,   o rd ina ry   d i f f e ren t i a l   equa t ions :  

&(t) = A ( t )  X (t) + B ( t ) u ( t ) ,   x ( t o )  = x. (3.1) 

where 

x ( t )  i s  the  n x 1 state vector,  

u ( t )  i s  the m x 1 control   vector ,  

B ( t )  is  the n x m distribution-of-control  matrix,  

A ( t )  i s  a n x n matrix. 

This  system i s  the  delay-free  analogue of the  time-delay  system 

specif ied by Equation (1.1). The assumption  that  the  system of i n t e r e s t  

can be described  by  Equation (3.1) implies   that   the   or igin,  which i s  the 

poin t   o f   in te res t   in  a regulator  problem, i s  an  equilibrium  point of the  

uncontrolled system. When the   o r ig in  i s  not  an  equilibrium  point (as i s  

the  case when a non-zero forcing  funct ion i s  included  in  Equation (3.1)), 

a non-zero  control  function i s  needed to   ho ld   t he   o r ig in  once it i s  

at ta ined.   This  problem w i l l  not be d i scussed   i n   de t a i l   i n   t h i s   pape r .  

Since  Equation (3.1) contains no time  delay,  standard  techniques may 

be applied  to  determine a sa t i s f ac to ry   con t ro l   func t ion ,   u ( t ) ,   w i th  

r e s p e c t   t o  a chosen  performance  index [4,7,9,11,12]. The purpose  of t h i s  

chapter i s  t o   p r e s e n t  some  known results f o r  systems  described by Equation 

(3.1). These r e s u l t s  w i l l  then be  used i n  Chapter I V  t o   ana ly i ze   l i nea r  

systems  possessing a time delay  in   the  control   funct ion.  The re la t ionships  

between  systems  which  possess a time  delay,  and  those which  do not, are 

then  discussed  in  Chapter V. 

The concept   of   control labi l i ty  i s  important i n   t he   d i scuss ion  of 

systems  possessing  time  delays. A brief   discussion  of  this concept, as 

it per ta ins  t o  delay-free  systems, i s  thus  presented  in  the  next  section. 
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3.2 CONTROWILITY OF ELAY-FFEX SYSTEMS 

Before  present ing  an  expl ic i t   def ini t ion of sys tem  cont ro l lab i l i ty ,  

the  fol lowing  def ini t ions are made i n   o r d e r   t o   c l a r i f y   t h i s  concept when 

applying i t  t o  systems  with  time  delap: 

Defini t ion 3.1 

A s t a t e   x ( t o )  = x. i s  t r a n s f e r r e d   t o  a s t a t e   x ( t f )  = 

by a con t ro l   u ( t ) ,  to s t < eo, if x ( t )  = xf f o r  a l l  t 2 tf. 

Defini t ion 3.2 

Xf f x. 

The control  time, tc, i s  the  t ime  required  to   t ransfer  a s t a t e  

from one va lue   to   another .  

A genera l   def in i t ion  of  c o n t r o l l a b i l i t y  may  now be  given  which i s  

v a l i d   f o r  systems  possessing  time  delays, as w e l l  as those which do not. 

Definit ion  3.3 

A s t a t e   x ( t  ) = x i s  cont ro l lab le  a t  time to i n   t h e   c o n t r o l  
0 0 

time tc (=tf - t ) if  the re   ex i s t s  some f i n i t e  time tf > to and some 

con t ro l   vec to r   u ( t ) ,   t c ( to , a ) ,  which t r ans fe r s  x. # xf t o   t h e   s t a t e  
0 

X ( t f )  = x 
f 

a t  time tf. (If every   s ta te  x i s  c o n t r o l l a b l e   i n  any 
0 

control  t ime tc > 0, then  the  system  associated  with x i s  s a i d   t o  be 

completely  controllable. ) 
0 

The f i n a l   s t a t e ,  x may be  equated to   ze ro  by a transformation of f '  
coordinates  without l o s s  of generali ty.   This i s  done, for convenience, 

throughout  the  remainder of th i s   d i scuss ion .  It should  also  be  noted 

that  the  concepts  of  "transfer" and "control  t ime"  expressed  in  Definit ions 

(3.1) - (3.2)  need  not enter   the  discussion on c o n t r o l l a b i l i t y  of  systems 

described  by  Equation (3.1). Assuming t h e   a v a i l a b i l i t y  of  an unbounded 

control ,   the   control   t ime,  tc, f o r  a con t ro l l ab le   s t a t e ,  x i s  complete- 

l y   a r b i t r a r y .  Also, from  Equation  (3.1) and the   f ac t   t ha t   t he   o r ig in  i s  an 

equilibrium  point  of  the  uncontrolled  system,  the  state  x(t)  i s  zero 

0' 

*Definitions  3.1 - 3.2 a re  similar to   t hose   g iven   i n  [ g ] ,  pg. 71. 
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f o r  a l l  t > tf if  and  only if u ( t )  = 0 ,  te[ t f ,m]  and  x( t f )  = o 
where tf ia a r b i t r a r y   s i n c e  t i s  a rb i t r a ry .  These  remarks may not 

be made about  systems  possessing time delays,  and thus  " t ransfer"  and 
11 cont ro l  time" are incorpora ted   in to   the   def in i t ion  of con t ro l l ab i l i t y .  

Now l e t  q ( - ,  - )  be  the state t rans i t ion   mat r ix   for   Equat ion  (3.1)* 

and  define  the  "controllabil i ty  matrix" of t h i s   equa t ion   t o   be  

The t e s t   f o r  system c o n t r o l l a b i l i t y  i s  expressed  in  terms of W ( t o , t f )  

by the  following theorem: 

Theorem 3.1 [lo] 

The system  described  by  Equation (3.1) i s  completely  controllable 

a t  time to i n  any control  t ime tc(=tf - to) i f  and only i f  W ( t o , t f )  

has  rank n for any tf > to. 

Assuming the  system of Equation (3.1) i s  completely  controllable,  

an  optimization problem may  now be  posed and some necessary  conditions 

for optimali ty  may be  presented.  This i s  done in   the   next   sec t ion .  

3.3 OPTIMIZATION PROBLEM FOR DEUY-FFZX SYSTEMS 

To fac i l i t a te   the   s ta tement  of the  optimization problem  considered 

here,  and the  corresponding  necessary  conditions  for  optimality,   several  

de f in i t i ons  w i l l  f i rs t  be made. 

The performance  index  (scalar) i s  given  by 

*cp(.,.) i s  the  state t ransi t ion  matr ix   for   both  Equat ion (3.1) 
and  Equation (1.1). 
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where 

tf i s  the final time  which may or may not be free, 

L [ x ( t )   , u ( t ) , t ]  i s  the  cost   a long  the  t ra jectory  f rom  the 

i n i t i a l   t i m e ,   t o   t h e   f i n a l   t i m e ,  tf,  

F [ x ( t f ) , t f ]  i s  the   cos t   fo r   be ing   i n   t he   s t a t e   x ( t f )  a t  

time tf. 

Defini t ion 3.5 

The terminal   constraints  on the state which the  system of Equation 

(3.1) may have to   sa t i s fy   a re   expressed   by   the  set of  equations 

where 

+ i s  a q x 1 vector  function, q 5 n. 

It i s  assumed that the  q cons t ra in ts   in   Equat ion  (3.4) a r e  

linearly  independent. It i s  necessary,   therefore,   that  q 5 n f o r   t h e  

problem t o  be wel l  posed. Also note that only  equality  end-point con- 

s t r a in t s   a r e   cons ide red   i n   t h i s   d i scuss ion .  The  more general  problem 

with  end-point   inequal i ty   constraints  i s  not   t reated  here ,   but   the   theory 

developed f o r  problems with  equality  constraints  can be easily  extended 

t o  handle t h i s  more general  problem [12]. 

Defini t ion 3.6 

The set of a l l  admissible  controls,   u(t)   in  Equation (3.1), i s  
designated  by U. 

It i s  noted  here   that   the   character  of the set U distinguishes  delay- 

free from time-delay  optimization  problems. For the   present ,  however, it 
i s  only  necessary  to state t h a t  U must be spec i f ied   before   an   expl ic i t  

optimal  control  history,  u (t),  can  be  determined.* 
OP 

The optimal  control problem  can now be s t a t ed   p rec i se ly   i n   t e rms  of 

the  quant i t ies   def ined above: 

*See [ l l ] ,   f o r  example,  on how t o   e x p l i c i t l y   s p e c i f y   t h e  set U. 
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OPTIMIZATION PROBLEM 

formance  index  (3.3)  with  Lagrange  multipliers 

+ 

b 
0 

Given the  system of Equation (3.1) and a n   i n i t i a l  state xo, 

determine  the  control  history u (t) , t c [ t o , t f ] ,  which  minimizes the 

performance  index J i n  Equation (3.3),. satisfies the  terminal   constraints  

in   Equat ion (3.4), and  which l ies i n  t h e   s e t  of admissible  controls,  U. 

OP 

When discussing  optimization problems of th i s   type ,  it i s  u s e f u l   t o  

construct   the  augmented performance  index J by  adjoining  the  constraint  

equations (3.4) and the  system  different ia l   equat ions (3.1) t o   t h e   p e r -  

- 

v and X ( t )  as follows: 

(3.5) 

I W t )  , u ( t >  ,t> + X T W  [A( t )x ( t )  

+ B ( t ) u ( t )  - G ( t ) ]  1 d t  

X ( t )  i s  an n x 1 vector  

funct ion.  If we define  the  variational  Hamiltonian of the  system  to  be 

H(x,X,u,t) E L(x( t )   , u ( t )  , t) + l T ( t ) i A ( t ) x ( t )  + B ( t ) u ( t )  1,  

tdtO,tf I ,  

then  the augmented performance  index may be wr i t t en  

where v i s  a q x 1 vector  of parameters and 

Since 5: = J when Equation (3.1) and  Equation (3.4) a r e   s a t i s f i e d ,  

the  optimization problem may be reformulated as follows: 

RFVISED OPTIMIZATION PROBUM 

Given the  system of Equation (3.1) and a n   i n i t i a l   s t a t e  xo: 
determine  the  control  history u ( t , X , v ) ,  t c [ t  ,t 1, which  minimizes 

the augmented performance  index J i n  Equation (3.7) and  which l i e s  
i n   t h e  set of  admissible  controls,  u. Choose v ,  i m p l i c i t l y ,   t o ' s a t i s f y  

the  Constraint   equations (3.4) , and  choose A (  t) such  that  the  system 

O2 o f  
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equations (3.1) are s a t i s f i e d  for t ~ [ t ~ , t ~ ] .  
The necessary  condi t ions  for   opt imal i ty  of u ( t )   i n   t h e   r e v i s e d  

optimization problem may  now be  s ta ted as follows: 

NECESSARY CONDITIONS FOR OETIMALITY ~ ~~ [ 121 

It i s  necessary, if u ( t )  = u (t) is  optimal  in  the  revised  optimi- 
OP 

zat ion problem, t h a t   t h e r e   e x i s t  a vector   funct ion X ( t )  , t e [ t o , t f ] ,  and 

a vector of parameters v such  that   the   fol lowing  condi t ions  are   sat isf ied:  

i ( t)  = -HxTJ t€[tO'tf1 (3.9) 

u (t) = 
a rg  min 

H ( x Y  'Y uY t> J (3.10) OP U€U 

x( to)  = x (3.11) 
0 

[- + v - + (- + 33) (Ax + Bu) + L]t,t = o  aF T& aF 
a t  a t  . a x   a x  f 

(3.12) 

(3.13) 

Th i s   s e t  of equations , along  with  the  constraint   equations (3.4) , 
i s  mathematical ly   consis tent   in   that  it contains: (1) 2n f i r s t - o r d e r  

ordinary  differential   equations  (3.8) - (3.9) with 2n boundary conditions 

(3.11) - (3.12); ( 2 )  q parameters v chosen  such tha t   the  q algebraic  

equations (3.4) a r e   s a t i s f i e d ;  (3) one parameter tf t o   s a t i s f y  one 

algebraic  equation (3.13); (4) one vec tor   re la t ionship  (3.10) t o   d e t e r -  

mine the   op t iml   cont ro l   vec tor  d (t). 
O P  

The condition  expressed  in  Equation (3.13) i s  r e f e r r e d   t o  as the 

t r ansve r sa l i t y   cond i t ion   fo r  free end time problems  and i s  used t o  determine 

tf.  This  equation need not be s a t i s f i e d ,  however, when tf i s  specif ied.  

The calculat ion of u (t) from  Equation  (3.10) i s  assumed t o  always be 

poss ib le   in   th i s   paper .  One i s  not   able   to   prform  the  operat ion  indicated 

in  Equation (3.10) e x p l i c i t l y  when on a s ingular   a rc   o f   the  problem*; 

OP 

*For a discussionof  singular  arcs,   see  Reference  [12],   Chapter 8. 
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these   a rcs   a re   no t   cons idered   in   the   p resent   ana lys i s .   F ina l ly   no t ice  

t h a t  X ( t )  sat isfies the  adjoint   equat ions of t he  system  of  Equation (3.1), 

and thus X ( t )  i s  termed  the  adjoint  vector of t h i s  system. 

In  the  next  chapter,  the  system  with  time  delay,  analogous  to  that 

of Equation (3.1), w i l l  be  discussed. The r e s u l t s  of the  present   chapter  

w i l l  be  used in   t he   ana lys i s   o f   t h i s  system. 
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CKAPTER I V  

OPTIMAL CONTROL OF LINEAR SYSTEMS POSSESSING TIME DELAYS 

4.1 SYSTEM DESCRIPTION 

The system  of i n t e re s t   i n   t h i s   chap te r   posses ses  dynamics described 

by  Equation (1.1). This  system i s  completely  specified  by  these  dynamical 

equations, by t h e   i n i t i a l   s t a t e   o f   t h e  system,  and  by the i n i t i a l   s t a t e  of 

the  delay  (see  Section 2.1). For convenience,  these  quantities are l i s t e d  

below: 

G ( t )  = A ( t ) x ( t )  + B ( t )  u ( t  - td) (4.1) 

x ( t  ) = x 
0 0 

It i s  assumed t h a t  t has a f i n i t e  magnitude,  and tha t   the   spec i f ied  

vec tor   func t ion   uo( t )  i s  a member of t he   s e t  U of admissible  control 

functions  (Definit ion 3.6). Except f o r   t h i s   r e s t r i c t i o n ,   u o ( t )  i s  an 

a rb i t ra ry ,   spec i f ied   vec tor   func t ion .  

d 

Referring  to  Equation (2.1) and Equation (4.3), the   so lu t ion  of 
Equation (4.1) f o r   x ( t )  may be wr i t ten  

t + td 
0 

where,  again, q ( -  , 0 )  i s  the   s t a t e   t r ans i t i on   ma t r ix  of both  Equation (4.1) 
and Equation (3.1). It i s  thus   seen   tha t   the   s ta te  of t he  system, x ( t ) ,  

a t  time t > to + td, i s  a funct ion of t h e   i n i t i a l   s t a t e  x and a 

funct ional  of t h e   i n i t i a l   s t a t e  of the  delay u (t),  t E [ t o , t o  + t d ] .  
0 

0 
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A discussion on c o n t r o l l a b i l i t y  of  Equations(lt.1) - (4.3) i s  presented 

in   the   next   sec t ion ,   para l le l ing   the  one given for delay-free  systems i n  

Section 3.2. 

4.2 CONTROLLABILITY OF SYSTEMS WITH TIME DELAY 

Defini t ion  3 .3   for   system  control labi l i ty   appl ies   equal ly   wel l   to  

systems  with, or without, time de lay   in   the   cont ro l .  The concepts  of 

"state t ransfer"  and  of "control  time"  (see  Definitions  (3.1) - (3.2) ) w i l l  

have s ignif icance  in   the  present   discussion,   despi te   their   i r re levance i n  
Chapter 111. 

First   define  the  "controllabil i ty  matrix"  for  the  system  characterized 

by  Equation (4.1) t o  be 

t + td 
0 (4.5) 

The following  theorem  gives a necessary  and  sufficient  condition,  in 

terms of tc (=tf - to) and W ( t o  -+ td, tf) , for insuring  the  control la-  

b i l i t y  of a s t a t e  x a t  time to associated  with  the  system of Equations 
0 

(4.1) - (4.3). 

Theorem 4.1 

A s t a t e   x ( t  ) = x associated  with  the  system of Equations 
0 0 ,  

(4.1) - (4.3) , i s  control lable  a t  time to i n   c o n t r o l  time t i f  

and only i f  (1) W ( t  + t t ) has  rank n f o r  any t > t + td, and 
c 

0 d ' f  f o  
(2) tc > td' * 
Proof - 

Assume t > td. Under t h i s  assumption it w i l l  f i r s t  be shown t h a t  

the  exis tence of W ' l ( t  + t t ) i s  su f f i c i en t   fo r   con t ro l l ab i l i t y   o f  x . C 

0 d ' f  0 

*Condition (2) of t h i s  theorem  implies  that  the state x ( t )  i s  
uncontrollable when t E  [t ,t + t a l .  Hence, from  Definition (3.3), any 
system  with a time delay ?n ?he control  cannot  be  completely  controllable. 
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Suppose the theorem i s  t rue .  Then, according  to   Defini t ion (3.3), 

t h e r e   e x i s t s  a time t 7 t + td and a cont ro l   func t ion   u( t  - td) 
such that x ( t  ) = 0 f o r  a l l  t 2 t Since t > t,, Equation (4.4) 
i s  va l id  a t  t = tf. Evaluating  Equation (4.4) a t  t = to + t t o   o b t a i n  

x ( t o  + td), and then   so lv ing   for   x ( t f )   in   t e rms  of x ( t  + td) gives 

f o  

f f '  C 

d 

0 

X ( t f )  = dtf ' tO + t d ) X ( t 0  + tal  + .it' q(tf>T)B(T)U(T - td)dT 

- 0  
t + td (4.7) 

According t o   t h e  theorem, W - l ( t  + td,tf) e x i s t s  for a l l  t > t + t 
Thus the  fol lowing  control   funct ion i s  a candidate for U(T - td), 

0 f o d' 

s 4 t o  + td,tfl: 

U(T - td) = -B (.IT (to + t d , d W  (to + t d ' t f ) X ( t O  + t d ) , T d t O  -I- t d , t f ]  
T T  -1 

(4.8) 

It w i l l  be shown i n  Chapter V that th i s  control   funct ion minimizes the 

performance c r i t e r i o n  

J = -  uT(~ - td)u(-c - td )da ,  t f > t  + t  
o d' 

I, 
0 

w i t h  x ( t f )   cons t r a ined   t o  be zero. This f a c t  i s  inc identa l ,  however, 

since  any  control l a w  which contains W (to + t ,t ) and makes x ( t  ) = 0 

is  a l l  that i s  needed here .   Subst i tut ion of Equation (4.8) into  Equation 

(4.7) g ives   x ( t f )  = 0. Then, from Equation (4.1), s e t t i n g  U(T - td) = 0, 

T 7 tf, r e s u l t s   i n   x ( t )  = 0, t 2 tf. Thus, the  existence of W 

when t 7 td i s  s u f f i c i e n t   t o   i n s u r e   c o n t r o l l a b i l i t y  of the i n i t i a l  

-1 
d f  f 

-1 
(to + t d> t f )  

C 
s t a t e  x . 

0 

To prove  necessity when tc > td, assume (1) W ( t o  + td,Tf) is 
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s i n g u l a r   f o r  some f i n a l  time tf, and (2) the  state associated  with 

the system  of  Equations (4.1) - (4.3) is  cont ro l lab le  a t  time to. Then, 

t h e r e   e x i s t s  a control   vector   funct ion  u0(7)  ,?€[totto +. t a l ,  which gives 

a non-zero state x ( t o  + td) at  time t = t + td (see Equation (4.6)) 
having  the  fol lowing  propertp:  

- 

- 
- 

0 

W ( t o  + td,Tf)G(t0 + td) = 0 (4.9) 

The existence of n O ( T ) , T E [ t O , t O  + t a l  follows from t h e   f a c t  that 
u,(T) i s  an   a rb i t ra ry   func t ion  and W(t + t t ) i s  s ingular .  Now, 

s ince   the   s ta te  X i s  cont ro l lab le  by  Assumption ( 2 ) ,  t h e r e   e x i s t s  a 

control   funct ion U(T  - td), Tc[tO + t d , t f ] ,  such   t ha t   x ( t f )  = 0 i n  

Equation (4.7). From th i s   equa t ion  we obtain 

0 d ’ f  
0 

(4.10) 
t + td 

0 

T - 
From Equation (4.9), x (to + t d ) W ( t  + t ,x )x(to + td) = 0 .  Using o d f  
Equation (4.5) in   th i s   express ion   then  gives 

- (4.11) 

st‘ [BT(~)cp (to + tdyT)F(to + t ,)] [B ( T I T  (to + t d y T ) T ( t o  + t,)]dT = 0 
T T T  T 

t + td 
0 

Equation (4.11) implies 

*If X ( t 0  f t d )  = 0 ,  then,since  the  origin i s  an  equilibrium  point of 
the  uncontrolled  system of Equation (44, I+ - t d )  = 0 ,  T 2 to + t d ,  
i n s u r e s   t h a t   x ( t )  = 0, t 2 to + t d .  Thus, x ( t o  + t d )  i s  assumed t o  be 
non-zero since we are   interested  in   determining  whether  x(to + t d )  # 0 
can be t r ans fe r r ed   t o   t he   o r ig in   i n   con t ro l  time tc > td whi le   sa t i s fy ing  
Assumptions (1) - (2) above. 
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f ina l ly   g ives  

2 - 
x (to + t d ) X ( t 0  + td) = - 

t + td 
0 

B ( T ) ~ ~ ( T  - t )dT = 0 
d 

(4.13) 

when t > td. 
C 

It remains t o  show t h a t  i f  

control lable .*  When t < t + 
f o r   x ( t f )  is  

f o  

Equation  (4.13)  implies X ( t o  + t ) = 0 which i s  a contradiction.  There- 

fo re  it i s  necessary, as well as s u f f i c i e n t ,  that w (to + t t ) e x i s t s  

- 
d -1 

d' f 

t < tdJ then  the state x i s  not 
C 0 

tdJ the   so lu t ion  of Equations (4.1) - (4.3) 

+ 

Recal l   tha t  u,(T), T E [ t o , t o  + t d ] ,  i s  a r b i t r a r y  and prescribed.  Since 

x(tf) in  Equat ion (4.14) is independent of u ( * ) ,  there  i s  no way t o   p l a c e  

x ( t  ) # 0 a t  the   o r ig in  once x. and u,(T), r E [ t o , t o  + t,], are 
prescribed. If, by  chance, x ( t f )  = 0, then it i s  necessary  that  u (7)  = 0, 

7e [ t f , t 0  + t,], i f  t h e   s t a t e  i s  t o  remain a t  zero   for  t 2 t In   genera l ,  

t h i s  w i l l  not be t rue .  Thus it i s  concluded t h a t   t h e  state associated  with 

the  system of Equations (4.1) - (4.3)  can  be  controllable  only i f  t 2 td. 
This  completes  the  proof of the  theorem. 

f 

0 

f '  

C 

It i s  of i n t e r e s t   t o  compare the   cont ro l lab i l i ty   requi rements   for   the  

delay-free  system (Theroem 3.1) and the  analogous  time-delay  system 

(Theorem 4.1).  When t < t + tdJ the  time-delay  system i s  uncontrollable,  

regardless  of t he   con t ro l l ab i l i t y  of the  delay-free system.  Therefore 
f o  

assume t > t + t and, f o r  purposes  of  comparison,  assum tf i s  f ixed  f o d  

The   un in t e re s t ing   ca se  of t = t i s  discussed  in   the  footnote  on 
Page 35. c d  
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and t i s  f r ee .  Now note that the integrand  of   the  control labi l i ty  

matrix  for  both  systems i s  pos i t ive  semi-def inite.   Define  the  integrand 

of the  control labi l i ty   matr ix   for   the  t ime-delay  system  to   be 

0 

From Theorem 4.1, if the  time-delay  system is control lable  for some 

then I(t + t d , 7 )  i s  non-zero  over some f i n i t e   i n t e r v a l  on  the  7-axis, 

. r c [ t o  + td,tf]. Then Equation (4.16) implies that I(to,7) i s  non-zero 

over  the same i n t e r v a l  on the  7-axis and  hence,  from Theorem 3.1, the  delay- 

f r e e  system i s  cont ro l lab le  a t  time . The converse i s  not   t rue  s ince 

c o n t r o l l a b i l i t y  of the  delay-free  system at  time to implies I(to,7) i s  

non-zero  over some f i n i t e   i n t e r v a l  on the  7-axis, ~ ~ [ t ~ , t ~ ] .  This non- 

zero segment on the  7-axis may, however, occur i n   t h e   i n t e r v a l  [to,to + t a l ,  
which,  from  Equation (4.16), implies  nothing  about I(to + td,7), 7 E [ t 0  

0 

+ t t I .  
d’ f 

To summarize the above discussion,  the  following  conclusions have  been 

drawn here : 

1) For a given t > t + td, the   con t ro l l ab i l i t y  of a state f o  
x( to)  = x associated  with  the  time-delay  system,  implies 

c o n t r o l l a b i l i t y  of this s t a t e   i n   t h e  analogous  delay-free  system. 
0’ 

2) For a given tf > to + td, t h e   c o n t r o l l a b i l i t y  of a s t a t e  

Ato) = X0’ sssociated  with  the  delay-free  system,  implies  noth- 
ing  about   the  control labi l i ty  of t h i s   s t a t e   i n   t h e  analogous 

time-delay  system. 
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4.3 OFTIMIZATION PROBLEM FOR SYSTEMS .m-R -Tim - D E F Y  

I n  th i s   sec t ion   an   op t imiza t ion  problem,  along  with  the  corresponding 

necessary  conditions for o p t i m l i t y ,  i s  formulated  for  l inear  systems  with 

time de lay   in   the   cont ro l .  Both the  system of i n t e r e s t  and the  optimiza- 

t i o n  problem  posed below are  analogous t o   t h o s e  of Section (3.3). The 

notat ion of t ha t   s ec t ion  w i l l  be  retained  wherever  possible.   In  Tact,   the 

optimization  problem  for  systems  with t i m  delay w i l l  be posed so tha t   t he  

r e s u l t s  of Section (3.3) can  be  used directly,   to  determine  the  necessary 

condi t ions  for   opt   imal i ty .  

F i r s t ,   de f ine  a new control  function,  v(t) ,   such  that   the  system 

equations may be wr i t ten  

where 

Thus v ( t ) ,   a n  m x 1 vector   funct ion, is   the   control   being  sought   in  a 

wel l  posed optimization problem. Note t h a t ,   i n   g e n e r a l ,   v ( t )  w i l l  be 

discontinuous a t  t = t + t . Also  recall ,   from  Section (4.2), t h a t  a 

s t a t e  of the  system of Equations (4.17) - (4.19) i s  controllable  only if 

tf 2 t + t . It i s  hereaf te r  assumed, therefore ,   tha t  tf 2 t + t . 
d o  

d o   d o  
The use  of v ( t )   i n   Equa t ion  (4.17) does  not  eliminate  any  problems 

created by  delays i n   t h e  system di f fe ren t ia l   equa t ions .  It does, however, 

make expl ic i t   the   bas ic   d i f fe rence  between optimization problems for 
systems  with,  and  without,  time  delays  in  the  control. The following 

definit ion  should make prec ise   the   bas ic   d i s t inc t ion  between the two systems: 

Defini t ion 4.1 

A cont ro l   func t ion   v( t ) ,  t E [ t o , t f ] ,  i s  a member of the set  of 

admissible  control  functions,  V, f o r  systems  with time delay, if and 

only i f  v ( t )  satisfies the  following  conditions:  
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t e [ to , to  + t a l  

where U i s  the  set  of admissiSle  controls  for  the  analogous  delay-free 
system  and u (t) is a prescribed  vector  function of time. 

0 

Hence, comparing  Equation (4.17) with  Equation (3.1), it i s  seen that 
the  time-delay  system i s  ident ica l   to   the   de lay- f ree  system,  excpet f o r   t h e  

d i f f e rence   i n   t he  sets of  admissible  controls,  V and U, from  which the  control  

function  for  each  system must be  chosen. Thus, i f  U is replaced  by V, and 

u ( t )  by v ( t ) ,   i n   S e c t i o n  (3.3), t he   r e su l t s  of that sect ion  for   delay-free 

systems become v a l i d   f o r  systems  with  time  delay. This i s  prec ise ly  what has 

been done below. The numbers in   parentheses  above the   equal i ty   s igns   in   the  

following  equations  refer  to  the  analogous (and sometimes identica1)equations 

for  delay-free  systems. 

The performance  index may be wr i t t en  

(4.20) 
t 

0 

From Equation (4.4), x ( t )  is  a funct ional  of u ( t)  f o r   t c [ t o , t o  + td]. 

Thus, during  this   t ime  interval ,   s ince J' i s  not  influenced by the,  as yet, 

undetermined  control  function,  the  performance  index may be  redefined  to 

be 

0 

J = F[x( t f )  , t f l  + St' L[x( t )  ,v ( t )  , t l d t .  
t + td 

0 

(4.21) 

(4.22) 
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a r e   s a t i s f i e d .  

Using  the same argument  which  allowed us   t o   de f ine  J by  Equation 

(4.21),  the  variational  Hamiltonian and  augmented performance  index f o r  

the  system may be wr i t t en  

Now the optimization problem may be  formally  stated as follows: 

O P T I M I Z A T I O N  FROBISM 

Given the  system of Equation (4.17) and a n   i n i t i a l  state x deter-  
0’ 

mine the   cont ro l   h i s tory  v ( t ,X,v) , tc[ t  + t t 1, which minimizes the  

augmented performance  index J i n  Equation  (4.24)  and  which l i e s   i n   t h e   s e t  

of admissi j le   controls  V. Choose v ,  imp l i c i t l y ,   t o   s a t i s fy   t he   cons t r a in t  

equations (4.22), and  choose X ( t )  such t h a t   t h e  system  equations (4.17) 
a r e   s a t i s f i e d   f o r   t c [  to + td,tf 3 .  

O P  o d ’ f  

Now no t i ce   t ha t   x ( t )   occu r s   i n   t he  above expressions  only when 

t 2 t + td. Assuming no dis turbances  act  on the  system  in  the  t ime  inter-  

v a l   [ t o , t o  + t , ] ,   the   s ta te  a t  t = t + t i s  given i n  Equation (4.6). 
Since x and u o ( t ) , t c [ t o y t o  + t , ] ,   are  prescribed,  x[t  + td) i s  

prescribed. Also note   that   the  knowledge  of x and uo ( t ) , t c [ to  ,to + td], 

0 

o d  
0 0 

0 

i s  necessary  only for the  purpose of Calculating X ( t  + td) From Definit ion 

(4.1) it i s  Seen that  the  choice of the  Control l a w ,  v ( t ) ,   t c [ t o  + td>t f l ’  

i s  ac tua l ly  made i n   t h e   s e t  U of admissible  controls  for  the  delay-free 

system. The optimization  problem may thus be ref0mulated:  

0 

REVISED O P T I M I Z A T I O N  PROBLEM 

Given the  system of Equation (4.17) and t h e   s t a t e  x ( t  0 + td), determine 

the   cont ro l   h i s tory  v ( t , X , v )  , t c [ t o  + t d , t f ] ,  which  minimizes the  augmented 

performance  index 3 in  Equation (4.24)  and  which l i e s   i n   t h e  set of admissible 
OP 
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controls  U. Choose v ,  imp l i c i t l y ,   t o   s a t i s fy   t he   cons t r a in t   equa t ions  

(4.22),  and  choose X ( t )  such  that  the  system  equations (4.17) are 

s a t i s f i e d   f o r  t E [ t o  + td , t f l .  
The necessary   condi t ions   for   op t imal i ty   o f   v ( t )   in   the   rev ised  

optimization problem a r e  now presented. The revised  optimization 

problem i n   t h i s   s e c t i o n  is  i d e h t i c a l   t o   t h a t  of  Section (3.3) for   the   de lay-  

free system when i s  replaced  by t + td. Thus the  necessary  conditions 

for   opt imal i ty ,   Equat ions (3.8) - (3.13), are i d e n t i c a l   f o r   t h e  two systems 

when this assoc ia t ion  i s  made. These condi t ions  are   repeated  here   for  

the  time-delay  system. A direct  proof,   from  the ca,lculus of var ia t ions  

viewpoint, i s  given i n  Appendix A. 

0 

NECESSARY CONDITIONS FOR OPTIMALITY 

It i s  necessary, if v( t )  = v (t) i s  optimal  in  the  revised  optimiza- 
OP 

t i o n  problem, t h a t   t h e r e   e x i s t  a vector   funct ion X ( t )  , t c [ t o  + t a , t f ] ,  and 

a vector of parameters v such that the   fo l lowing   condi t ions   a re   sa t i s f ied :  

(4.26) 

x(to + t ) specified  (4.28) 
d 

[x aF + vT bJr + (g + v T  &)(Ax + Bv) + L] = o  at ax t = t  f 
(4.30) 

The discussion  following  the  statement of the  necessary  conditions 

f o r   o p t i m l i t y  of delay-free  systems i s  also  appl icable   here .  Comparing 

Equations  (4.25) - (4.30) with  Equations (3.8) - (3.13) reveals  the  follow- 

ing   bas i c   f ac t ,   s t a t ed   he re   i n   t he  form  of a theorem: 

Theorem 4.2 

The necessary  conditions  for  optimality  of  delay-free  l inear  systems 
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(Equation (3.1)) are ident ical   to   the  necessary  condi t ions fo r  o p t i m l i t y  

of  analogous  systems  with  time  delay in   the  control   (Equat ions (4.1) - 
(4.3)) if 

(1) both  systems  possess  the same state a t  time t = t + td ,  
0 

(2) t 2 t + td. 
0 

The consequences  of t h i s   r e su l t ,   w i th   r ega rd   t o   con t ro l  of l i n e a r  

systems  with time de lay   in   the   cont ro l ,  i s  discussed  in  the  next  chapter.  

It should  be  apparent now t h a t   t h e   a b i l i t y   w i t h  which one can  optimally 

control  systems  with time de lay   in   the   cont ro l   input  i s  l i m i t e d   t o  ones 

a b i l i t y  of optimally  controlling  the  analogous  delay-free  systems. 

\ 
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CHAFTER V 
CALCULATION AND IMPLEMENTATION OF  OPTIMAL COIWROL LAWS 

5.1 RELATIONSHIP BETWEEN OPTIMAL CONTROL LAWS FOR  DELAY-FFBX AND 
TIME-DELAY SYSTEMS 

Assume that   the   opt imal   control  l a w  for  the  delay-free  system  has 

been  determined  by  satisfying  the  necessary  conditions  for  optimality 

(Equation (3.8) -Equation (3.13)) of the  opt imizat ion problem  posed i n  
Sect ion 3.3. This   control  l a w  w i l l ,  in   general ,   be  a function of the  

s t a t e ,  x( t ) ,  as well as time. Assuming tha t   the   cont ro l  l a w  is a feed- 

back so lu t ion  of the  optimization problem, IJ (t) may be wr i t ten  
OP 

u (t) = k ( x ( t ) , t )  OP (5.1) 

The d i f f i cu l ty   i n   ob ta in ing   k (   x ( t )  ,t) f o r  a general  performance  index 

and a high-order  system i s  most of ten  appreciable .  The in t en t  of t h i s  

sect ion,  however, i s  t o  show t h a t  once k ( x ( t ) , t )  i s  known, then  the 

optimal  control l a w  f o r   t h e  analogous  time-delay  optimization  problem i s  

a l so  known. 

Theorem 4.2 re la tes   the   necessary   condi t ions   for   op t imal i ty  between 

the  delay-free and the  analogous  time-delay  optimization  problems.  Start- 

ing a t  time t = t + t and s t a t e  X ( t o  + td), the  opt imal   t ra jector ies  

fo r   each  system are   ident ica l   s ince ,  by Theorem 4.2, the  necessary  conditions 

fo r   op t ima l i ty   a r e   i den t i ca l .  Now notice,  from  Figure 1.2, tha t   the   cont ro l  

s igna l  a t  time t i s  generated a time td p r i o r   t o  i t s  execution. If the  

t r a j e c t o r i e s  of the  time-delay and delay-free  systems  are  to match after 

time t = to + td, it i s  necessary  that   the   calculat ion of the   cont ro l  a t  

time t be  based upon knowledge of  the state a t  time t + td. Figure 5.1 

shows diagramatically how the  optimal  control l a w  for  the  time-delay  system 

can  be  calculated  from  the  optimal  control l a w  for  the  delay-free  system 

by predict ing  the  value of t h e   s t a t e  at time t + td. Figure 5.2 shows a 

typical   control   h is tory  for   each  system which r e s u l t s  when us ing   t h i s  

control  scheme. 

o d  

The degree of success  in  implementing  this  control l a w  i s  d i r e c t l y  

r e l a t e d   t o   t h e   a b i l i t y  of predic t ing   the  state a t  time t + td, knowing 

only t he   p re sen t   s t a t e  of t he  system  and the  present  state of the  delay. 
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If the  time  delay  is  very  large  and  if  the  disturbances  acting on  the 

plant  are  basically  unpredictable,  the  resulting  trajectories  would  be 

sub-optimal  due  to  the  inability  to  accurately  predict  the  state.  These 

trajectories  are  not  optimal during the  time  interval,  of  magnitude 

between  the  initiation  of an unpredicted  disturbance  and  the  time  at  which 

the  resulting  control  signal  first  responds  to  this  disturbance. 

%’ 

Some  example  problems  are  discussed  in  the  next  two  sections  to 

illustrate  the  ideas  presented  above. In Section 5.2 the  optimal  control 
law for an  nth-order  system  with  time  delay  and  with  unbounded  control 
is  derived  analytically for a  quadratic  performance  index.  The  second- 

order  example  of  Section 2.2.2 is  reconsidered in  Section 5.3. 

5.2 OPTIMAL  CONTROL  OF  nbu-ORDER SYSTEMS WITH UNBOUNDED  CONTROL AND 
QUADRATIC  PERFORMANCE  INDEX 

Consideration  of  optimal  control  problems  with  unbounded  control  is 

motivated  primarily  by  the  ease  with  which  the  Hamiltonian  of  the  system 
may  be  minimized  (Equation (4.27)) when  no  bound  is  placed on the  control. 
This  operation  is  particularly  simple  when  the  system  is  linear  and  the 

performance  index  is  quadratic in  the  control. Two such  problems  are 

considered in this  section,  one  fixed  end-point  problem  and  one  free  end- 

point  problem.  The  necessary  conditions for optimality  (Equations (4.25) 
(4.30)) will  be  used  directly in obtaining  solutions  to  these  problems. 

5.2.1 FIXED  END-POINT  PROBLZM WITH SPECIFIED  FINAL  TIME 

The system  of  Equations (4.1) - (4.3) is  considered  here.  The  system 
is  assumed to be  controllable  for  t > t + t  where tf is the  specified 

final  time.  Define  the  performance  index f o r  this  problem  to  be 
f o d’ 

t + td 
0 

where s is a symmetric,  non-singular  m  x  m  weighting  matrix.*  The 

*A weighting  matrix  is  also assumed to  be  positive  definite  in order 
tc  give  meaningful  results. 
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cont ro l  problem is  t o   t r a n s f e r   t h e   i n i t i a l  state to   t he   o r ig in   wh i l e  

minimizing J. The terminal   constraints  are thus  specif ied by 

The c lass ,  U, of admissible  controls i s  assumed t o  be  broad enough t o  

make the   ca lcu la t ions  below val id .  I n  pa r t i cu la r ,  it i s  assumed that 

Ui(? - ta l ,  t h e  components  of U(T - ta) , may be unbounded s o  t h a t  
minimization  of  H(x,X,v,t) may be  accomplished  by s e t t i n g  Hv = 0 and 

so lv ing   fo r  v ( t ) , t E [ t o  + td,tf 3 .* 
The ca lcu la t ion  of v (t) i s  thus  accomplished as follows: 

The variational  Hamiltonian,  from  Equation  (4.23), i s  
OP 

and the  optimal  control l a w  i s  obtained  by  using  Equation  (4.27): 

From Equation  (4.26)  and  Equation  (4.29),  the  adjoint  variables are solu- 

t i ons  of 

T 
i ( t)  = - A ( t ) A ( t ) ,  X ( t f )  = V ,  t c [ t  + td,tf]. 

0 (5.6) 

Integrating  Equation (5.6) backwards gives 

X ( t )  = cp ( t f , t ) V ,  t4to + td,tfl T 
(5.7) 

where p(* ,  * )  i s  the   s t a t e   t r ans i t i on   ma t r ix  of Equation (4.1). Recall  

tha t   s ince   x ( t  + td) can  be  calculated  from  Equation (4.6), it is  consid- 

ered  specif ied.  Thus, integrat ing  Equat ion (4.1) forward,  using  Equation 

(5.5) and  Equation (5.7), gives 

0 

t 

t + td 
0 

*More precisely,  Hv = 0 determines  an extremum of J. Further 
ana lys i s  i s  r equ i r ed   t o  show t h a t  J i s  minimized. 
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Since v is  chosen to   s a t i s fy   t he   t e rmina l   cons t r a in t s ,  v i s  found 

from Equation (5.8) with t = tf. By u t i l i z ing   t he   p rope r t i e s  of 

(p( *,.), v may be w r i t t e n   i n   t h e  form 

t + td 
0 

x(to + (5.9) 

where the  exis tence of the  inverse i s  insured  by the non-singularity of 

Q2 and by  the  control labi l i ty   assumption  (exis tence  of  W-’(t + td,tf)). 
Substi tuting  Equation (5.9) and  Equation (5.7) into  Equation (5.5) f i n a l l y  

gives  the  optimal  control l a w  f o r  this  problem: 

0 

This control   dr ives  the i n i t i a l   s t a t e   t o   z e r o  a t  time tf and the control  

v(t) = 0 ,  t 2 t holds the state a t  the or igin.  This completes the  

solution  of this  optimization problem. 
f ,  

Se t t i ng  Q2 = I,, the  m x m ident i ty   mat r ix ,   in   Equat ion  (5.10), 
(t) reduces to   t he   con t ro l  l a w  (Equation (4.8)) der ived   in   Sec t ion  4.2 

OP 
for   zeroing the state. Also  note  that  Equation (5.10) gives   the sampled- 

data: open loop   so lu t ion   to   the   op t imiza t ion  problem. 

The continuous  feedback  form of t h e   s o l u t i o n   t o  .the optimization 

problem i s  found  by  replacing with t i n   t h e  above discussion. It 

was assumed that t + td e t and  hence the  continuous  feedback  solution 

can  only be va l id  when t e tf - td. This i s  expected  s ince  af ter  time 

tf - td, t < td and,  from Theorem 4.1, the system i s  no longer   control l -  

able.  After  time tf - td, therefore,  the  sampled-data  version of t he  

so lu t ion  must be  used. 

0 f 

C 

Replacing  by t in  Equat ion (5.lO), the  feedback  solution i s  

%e so lu t ion  i s  sampled-data in   the   l imi ted   sense  where the number of 
samples i s  one, namely the  sample x a t  time 

0 
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where x( t  + t ) may be  wri t ten d 

t + td 
x ( t  + td) = rp(t + t d , t ) x ( t )  +J rp(t + td,T)B(T)voP(T)dT. 

t 

Thus, from  Equation (5.12), the  optimal  feedback  control l a w  i s  a l i n e a r  

function  of  the  present state of  the  system  and a functional  of  the  present 

s ta te   of   the   delay.   This  la t ter  fact  tends  to  complicate  the  implementation 

of this  t ime-variable  feedback  control law. 

(5.12) 

Fina l ly   no te   tha t   the   cont ro l   ga in   in   Equat ion  (5.11) approaches 

i n f i n i t y  as t -O t - td. This control  behavior i s  expected whenever term- 

ina l   cons t r a in t s  are r equ i r ed   t o  be sa t i s f ied   exac t ly .  To a l l e v i a t e   t h i s  

problem, these  terminal   constraints  are relaxed  in   the  next  problem  and, 

instead,  are replaced  by a quadratic term i n   t h e   f i n a l  state i n   t h e  perform- 

ance  index. 

5.2.2 FREE  END-POINT PROBLFM WITH SmCIFIED FINAL TIME 

The problem  considered  here i s  i d e n t i c a l   t o   t h e  problem above with 

the  except ion  that   the   terminal   constraint ,  Jr = 0, i s  removed, and 

the  performance  index i s  modified t o  be 

'Itf T 

- 

J = 2 2 xT(tf)Q,x(t,) + 5 u (T - t d )Q2U(T  - td)dT (5.13) 

t + td 
0 

where Q1 i s  a symmetric,  non-singular n x n weighting  matrix. The 

ca lcu la t ion  of v (t) f o r   t h i s  problem i s  similar t o   t h a t  of the   f ixed  

end-point problem. This   calculat ion i s  sketched below. 
OP 

The variational  Hamiltonian i s  given by 

H(x,X,v,t) = $ v%,v + X T [ A x  + Bv], t a r t o  + td,tfl 
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The divergence  from the so lu t ion  of the fixed  end-point  problem  occurs 

in   t he   so lu t ion   fo r   t he   ad jo in t   va r i ab le s :  

where the  inverse   exis ts   s ince Q;' i s  assumed non-singular  and  the  integral  

term i s  posit ive  semi-definite.   Finally,   substi tute  Equation(5.18) and 

Equation (5.17) into  Equation (5.15) t o   g e t  v (t) : 
OP 

t + t  
o d  

Now, i f  v( t )  = 0, t 2 t and if the o r ig in  i s  a t  least  s tab le   wi th in  

a region  containing  xit ,) ,   then  the state w i l l  remain i n  some neighbor- 

hood of the   o r ig in ,  as desired.  This completes  the  solution of t h i s  

optimization problem. 

f '  

Note that,   again,   Equation (5.19) gives the sampled-data,  open  loop 

so lu t ion   to   the   op t imiza t ion  problem. The continuous  feedback  control 

l a w  i s  obtained  from  Equation (5.19) by  replacing t with t. Again, 

this feedback  solution is  v a l i d  only when t s tf - td. The feedback 
0 
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so lu t ion  is  wr i t ten  

t 5 tf - t d  
Again, v (t) i s  a funct ion of the  present  state of the system  and a 

func t iona l  of the  present  state of the   de lay ;   bu t   no te   tha t  v (t) is 

f i n i t e   i n  magnitude f o r  a l l  t s tf - td and f o r  any tf,  as long as 

x ( t )  i s  f i n i t e   f o r  a l l  time. A f in i t e   ga in   con t ro l l e r   has   t hus  been 

obtained  by  accepting a non-zero f i n a l   s t a t e .  The proper  choices  for 

Q1,Q2, and tf i n  Equation (5.18) can,  however, make x ( t f )   a r b i t r a r i l y  

small and s t i l l  bound the  magnitude  of the   cont ro l   e f for t .  

OP 

OP 

The above two problems  were  solved  by  satisfying  the  necessary  condi- 

t i o n s   f o r   o p t i m a l i t y   d i r e c t l y .  This was possible   s ince  the  adjoint   equat ions 

were eas i ly   i n t eg ra t ed  and the  minimization  of  the  Hamiltonion  easily  yielded 

the   cont ro l  l a w  i n  terms of the   ad jo in t   var iab les .  The problem  considered 

in   t he   nex t   s ec t ion  i s  not   easi ly   solved by using  the  necessary  conditions 

d i rec t ly .   Ins tead ,   the   ideas   d i scussed   in   Sec t ion  5.1 a r e   u t i l i z e d   t o  

obtain a feedback  control l a w  for   the   op t imiza t ion  problem. 

5.3 SECOND-ORDER EXAMPLE WITH BOUNDED COMlROL AND FREE  FINAL TIME 

The problem  considered i n   t h i s   s e c t i o n  i s  the  minimum-time regulator  

problem f o r   t h e  2nd -order  plant of Section 2.2. The system dynamics 

and  problem  statement are summarized h e r e   f o r  convenience: 
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J =st‘ a t  = tf -(to + ta) 
t + td 

0 

where the  state x ( t )  i s  given b y  

The ad jo in t   vec tor  i s  wr i t t en  AT = 3 .  The va r i a t iona l  Hamilton- 

i an  for t h i s  system i s  thus 

Thus, v (t) i s  determined  once A 2 ( t )  i s  known as a funct ion of 

from  Equation (5.31) and v T  = [v1,v2] must be  found  such that  Equation 

(5.24) i s  s a t i s f i e d .  Even f o r  t h i s  simple  problem, t h i s  i s  not  an easy 

task. 

. OP 
eo, 0’ 

e and t. To accomplish  this, however, tf must be  determined 

The  minimum-time switching  curves  for  the  analogous  delay-free 

optimization  problem were descr ibed  in   Sect ion 2.2.2. To s implify  the 

discussion  here,  assume ( = 0.0. Also assume t h a t  td i s  of such a 

magnitude t h a t  no double commands occur,  otherwise it would  not  be possible  
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t o   o b t a i n  a closed-loop,  feedback  control l a w  f o r  th i s   op t imiza t ion  

problem (see Section 2.2.1). From the  discussion  in   Sect ion 5.1, t h i s  

delay-free  solution  can  be  used t o  construct   the  command curves which 

give  opt imal   t ra jector ies   for   the  t ime-delay system. 

This  construction i s  accomplished  by f i rs t  observing  that  AD = -At 

i n   t h e  (e,;) - phase  plane  (see  Figure 2.1). A clockwise  rotation on a 

t ra jec tory   about  (fN,O) of t, radians  therefore   represents   predict ion 

of t h e  state a t i m e  td in to   the   fu ture .  It w a s  concluded in   Sec t ion  5.1 
t h a t   a f t e r   t i m e  t + td the   op t imal   t ra jec tor ies  of the  delay-free  and 

time-delay  systems are ident ica l .  Also r e c a l l  that switching  occurs a 

time td a f t e r   t h e  command has been  given. The optimal command curve i s  

thus  obtained  by  rotating  the (U = -N t o  u = +N) - switching  curve 

radians  counterclockwise  about (-N,O) and  by ro ta t ing   the  (U = +N 

t o  u = -N) - switching  curve td radians  counterclockwise  about (+N,O) . 
This   locat ion of the  command curve  insures  that  the  switching  curves for 
the  optimal  delay-free .and time-delay  systems  are  the same, provided  that 

no dis turbance  acts  between command and  switch. The optimal command 

curves,  along  with a sample t r a j ec to ry ,   a r e   i l l u s t r a t ed   i n   F igu re  5.3. 

0 

td 

Notice that  since  the  optimal  delay-free  switching  curve w a s  s p l i t  

a t  t he   o r ig in   t o  form the command curve,   the   resul t ing command curve i s  

disconnected. The optimal command curve  which  connects  the two segments i s  

found  by r eca l l i ng   t ha t   v ( t )  = 0, t > tf, s i n c e   t h e   i n i t i a l   s t a t e  i s  

be ing   t ransfer red   to   the   o r ig in .   S ince   the  command v = 0 must be  given 

a t  time tf - td, the  connecting command curve must be the  locus of all 
points   in   s ta te   space  having a minimum-settling-time of magnitude 

The ca lcu la t ion  of t h i s   l ocus   fo r   gene ra l   l i nea r  systems  with  scalar 

control  i s  performed i n  Appendix €3 with  this  second-order  system  taken 

as a spec i f i c  example. When td = radians,   the  locus i s  given  by 

td' 

(GL r N) + (eL T N) = (2N)  
2 2 2 

(5.31) 

This  zero-comand  curve i s  indicated by a dashed l i n e   i n   F i g u r e  5.3. It 

is noted  that   th is   curve i s  an isochrone of the  origin  with  an  associated 

time o f  magnitude td. 
It i s  concluded t h a t  any init ial  s t a t e ,  which p l aces   x ( to  + ta) 

outside of the   region bsunded  by the  zero-command curve, i s  t ransfer red  

t o   t h e   o r i g i n  i n  minimum time by the  command curve  described above  and 



u = - N  

K E Y  
"- t d  = o  

7T 
td = RAD. 

u = + N  

Figure 5.3. Minimum-Time Control  to  the  Origin of the  2'1u-Order System f o r  
Zero Damping and a Time Delay  which  Gives No Double Commands. 
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shown in   F igu re  5.3 f o r  t = radians.  If multiple commands occur, 

a feedback  Bolution  does  not  appear t o  be  possible   s ince  the command 

l i n e s  become a funct ion of t h e   i n i t i a l   s t a t e .   S i m i l a r l y ,  i f  x(to + td) 

l i e s   w i th in   t he   r eg ion  bounded by  the zero-command curve,  the command 

l i n e s  are f u n c t i o n s   o f   t h e   i n i t i a l  state and thus a feedback  control l a w  
does  not  appear t o  be possible.  

a 2  

Several   control   a l ternat ives   are   avai lable   to   handle   the  case when 

x ( t o  + t ) l i e s   w i th in   t he   r eg ion  bounded by  the zero-command curve: d 

The  minimum-time t r a j e c t o r y  can  be  generated i n  an open loop 

cont ro l  scheme by  predicting ahead u n t i l  tf and i ssu ing  

commands such that switching  occurs on the  optimal  switching 

curve  of  the  delay-free  system. 

If N i s  s u f f i c i e n t l y  small compared to   acceptable   values  of 

e and e ,   the   region bounded by the  zero command curve  can  define 

a "dead zone region"  within which v = 0. That is ,  we could 

al low  s ta te   deviat ions that remain inside  the  region,   but   t ransfer  

deviations  outside  the  region a t  time t + td t o   t h e   o r i g i n  

i n  minimum time. I n  some sense ,   th i s  would increase  the  terminal 

manifold  from a p o i n t   t o  a region  in  state  space.  

A dual  control  system  could  be  used  with  the zero-command curve 

ac t ing  as the  switching  curve  between  the two control  schemes. 

For state   deviat ions  outs ide  this   switching  curve,   the  minimum- 

time  control scheme discussed above i s  used. Inside  the  switch- 

ing  curve a control ler   such as tha t   der ived   in   Sec t ion  5.2.2 can 

be used. The f i n a l  t i m e  would not have t o  be grea te r   than   2 td  

s ince   the   en t i re   reg ion  i s  bounded by points  whose minimum-settling- 

time i s  td. Since  the  region i s  small, proper  values of Q1,Q2, 
and tf could  be  chosen  so  that  x(tf) i s  s u f f i c i e n t l y  small 

and the   cont ro l  bounds are   not  exceeded. 

0 

The three   cont ro l  schemes suggested above could,   theoretically,  be 

a p p l i e d   t o  any cont ro l  problem for which the  theory  developed  here i s  

applicable.  The zero-command curve  can  always be generated from  Equation 

(B5) i n  Appendix B. The geometrical   description of these command curves 
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becomes much more d i f f i c u l t ,  however, f o r  more complicated  problems. The 

theory and ideas  which  were appl ied  to   solve  this   second-order  example 

are s t i l l  applicable  to  higher-order  systems,  but  the  lack of knowledge 

of the  switching  curves for the  analogous  delay-free  systems limits our 
abi l i ty   to   solve  the  higher-order   t ime-delay  opt imizat ion  problems.  

56 



CHAITERVI , 

SUMMARY AND CONCLUSIONS 

I n   t h i s   s t u d y ,  two analogous  systems  and  optimization  problems  were 

defined  and  analyized. The only   d i s t inc t ion  between the  two systems i s  

t h a t  one possesses a l a rge  time de lay   in   the   cont ro l .  It was shown t h a t  

systems  with  time  delay in   the  control   are   uncontrol lable   f rom  the  present  

time, to, u n t i l  time t + td. This  fact   al lowed  us  to  formulate  the 

optimization  problem for  the  t ime-delay  system  in  such a way tha t   t he  

necessary  conditions  for  optimality  of  the  delay-free  system become applic- 

able   to   the  t ime-delay system. The optimization  theory  presented  here 
culminates  in  the  statement of Theorem 4.2, which i s  considered  to  be the 

main r e s u l t  of th i s   s tudy .  

0 

The necessary  conditions for optimali ty  of time-delay  systems  can 

be  obtained  by means of the  calculus  of var ia t ions,  as demonstrated i n  

Appendix A, without  ever  considering  the  analogous  delay-free  system. 

These  conditions, in   cer ta in   ins tances ,   can   then  be  used d i r e c t l y   t o   d e r i v e  

an  optimal  control l a w  for   the  t ime-delay system.  Several n -order  ex- 

ample problems, wi th   carefu l ly  chosen  performance c r i t e r ions ,  were presented 

where t h i s  was the  procedure which w a s  followed. 

t h  

By es tab l i sh ing  and considering  the  delay-free  analogue of the  time- 

delay system, we have shown t h a t  knowledge of the  solut ion of  one of the  

optimization problems i s  suff ic ient   to   solve  the  analogue  opt imizat ion 

problem. A second-order  problem  with bounded control  i s  used t o  demonstrate 

t h i s   p r inc ip l e .  The c rea t ion  of t he  zero-command curve w a s  the  main f ea tu re  

i n   t h i s  problem. It w a s  demonstrated  by example that  large  amplitude limit 

cycles are cha rac t e r i s t i c  of  time-delay  systems  with bang-bang control.  

The zero-command curve  not  only  eliminates  steady state l i m i t  cycles,  it 
a lso   insures  that the  system  t ra jector ies  end at the   o r ig in  when the  state 

a t  time t + td l i e s  outs ide of the  region bounded  by the  zero-command 

curve.   Several   control  al ternatives  are  suggested which  could  be  used t o  

handle  the  case when x( to  + td) l ies  inside  this   region.  

0 

Obtaining  the  feedback  control l a w  f o r   t h i s  second-order  example w a s  

accomplished  only  by  assuming the  non-existence of  double commands. This 
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assumption  places  an  upper l i m i t  upon the magnitude  which the  time 
delay  can assume, while s t i l l  requi r ing  that the  opt imal   control  l a w  

have a feedback  structure.  When double commands do occur,  the  optimal 

cont ro l  l a w  can s t i l l  be  generated,  but  only  in  an  open-loop  sense. 

Several   general izat ions  of   this  work are poss ib le .   F i r s t ,  it w a s  

assumed throughout  this  study  that   the  system dynamics are l inear .   This  

assumption was convenient   in   the   cont ro l lab i l i ty   d i scuss ion ,   bu t   inves t i -  

gat ion of the  necessary  conditions  for  optimality  reveals  that   system 

l i n e a r i t y  i s  not   essent ia l .  The optimization problem was posed  by f i rs t  

consider ing  the  resul ts  of t he   con t ro l l ab i l i t y   d i scuss ion .  Once posed, 

however, the  optimization problem became independent  of  system 

linearity.  Implementation, however,  of t he   r e su l t i ng   con t ro l  laws, becomes 

exceedingly  diff icul t ,  as i s  the  case  with  non-l inear ,   delay-free  opt imal  

cont ro l  problems. To gene ra l i ze   t h i s   s tudy   t o  encompass non-linear  systems, 

one would have to   cons ide r   con t ro l l ab i l i t y  of non-linear  systems t o  see 

i f  a given  optimization problem  statement i s  meaningful. 

Only a regulator  type  control problem was cons ide red   i n   t h i s  work. 

This was done merely to   s implify  the  analysis .   Obtaining  the  necessary 

condi t ions   for   op t imal i ty   d id   no t  depend upon the  type  of  control problem 

considered. Only i n   t h e  use  of  these  necessary  conditions  to  obtain  an 

optimal  control l a w  does  the  regulator  assumption  simplify  the  analysis. 

Finally,   the  assumptions  that   the time delay w a s  constant  with  respect 

t o  time  and iden t i ca l  in magnitude for each component of the   cont ro l   vec tor  

arose  from  the model problem  which  motivated this   research.* To remove 

these  assumptions would requi re   fur ther   ana lys i s ,   bu t  it i s  f e l t  t ha t   t he  

ideas  discussed  in  this  paper  can be u t i l i z e d  when cons ider ing   th i s  more 

complicated  problem. 

To conclude, it can   be   sa id   tha t   the   ab i l i ty   to   cont ro l   op t imal ly  

the   c l a s s  of  systems  considered i n   t h i s  paper i s  dependent upon the  

ab i l i ty   to   cont ro l   op t imal ly   the   de lay- f ree   ana logue  and t h e   a b i l i t y   t o  

predict   the   dis turbances which a c t  on the  system. The implementation 

problems w i l l  be a t  l e a s t  as d i f f i c u l t  as the  implementation  problems 

*Atti tude  control,  from ear th ,  of a deep-space satel l i te  approxi- 
mately sat isf ies   these  assumptions.  
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encountered  in   delay-free  control lers .  The need t o   p r e d i c t   t h e   f u t u r e  

state is  t h e   r e s u l t  of the inherent  period of uncontrol labi l i ty   possessed 

by l i n e a r  systems with a time de lay   in   the   cont ro l .  
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APPENDIX A 

DERIVATION OF NECESSARY  CONDITIONS FOR OFTIMALITY ' 

OF SYSTEMS WITH TIME D F h l Y  " 

The purpose  of t h i s  appendix i s  to   de r ive   f i r s t -o rde r   necessa ry  

conditions  for  minimizing  the augmented performance  index, J, f o r  

systems  with  time  delay  in  the  control  (Equation (4.24)): 

- 

J = [ F [ x ( t ) , t l  + vT$ ' [X( t ) , t I l t  = tf + f f  JH(X,X,V,t)  

t + td 
0 (A1 1 

- X T ( t ) G ( t )  d t  1 
To accomplish  the  minimisation of 5, we take t h e   d i f f e r e n t i a l  of 

Equation ( A l )  , remembering t h a t  tf may be f r ee :  

dJ= + L)dt  + a d x ]  (+x bR + am [(z 
- XT(t)Sl;>dt 

- 
& t = t  ax & 

t + t d  
0 

where 

0 = F [ x ( t ) , t ]  + v $ [ x ( t ) , t ] .  T 
(A3 1 

Now integrate  Equation (A2) by p a r t s  and  use 6x = dx - kat (see [12], 

pg. 72 ) t o   o b t a i n  

L 

+ s' [ (2 + ItT) 6x + $V]dt 

t + td 
0 

Now f o r  ? t o  be  minimized, it is necessary  that  be zero (or as close 

t o  zero as possible).  Therefore,  since a t f ,  6x ( t ) ,  and dx ( t  ) a r e  

a rb i t r a ry   va r i a t ions ,  choose the   coe f f i c i en t s  of these  terms to .be   ze ro  

in   Equat ion (Ab): 

f 
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& + L + XT(Ax + Bv)It = tf = o  

i T ( t )  = - a t€[t + t t ] ax' 0 d ' f  

Equations (A5) - (A") are equivalent  to  Equation (4.30), Equation (4.29), 
and  Equation (4.26), respectively.   Since  x(t  + t ) i s  assumed 

specif ied,   6x( t  + ta) is zero. Hence, d? reduces t o  
o d  

0 

t + td 
0 

Now, t o  minimize 5, Pontryagin  et .al  [13] shoved tht v(t)  must s a t i s f y  

the  following  relationship  over the t i m e  i n t e rva l   o f   t he   i n t eg ra l   i n  

Equation (A8) : 

Equation (Ag) 
s e t t i n g  Hv = 

have  found  an 

is precisely  Equation (4.27). If v were  unbounded, 

0 i n  Equation (A8) f o r  t€[t + td,tf] insures   tha t  we 

extremum of 5. Second-order suff ic ient   condi t ions would be 
0 

required i n  order   to   determine if  the  extremum is  a minimum.  When v i s  

bounded, the   so lu t ion  of Equation (Ag) gives v (t). If v (t) l i e s  

on a boundary of admissible v, Ire are assured that' has  been  minimized. 

When v (t) does not l i e  on a boundary  of admissible v, t he  second- 

order  sufficient  conditions  are  again  required  to  determine  whether 5 
has been  minimized. 

OP O P  

OP 
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APPENDIX B 

CALCULATION OF ZERO-COMMAND LOCUS FOR LINEAR SYSTEMS 

AND MIjJD4J”TIM.E TRAJECTOFUES 

We have  assumed the  non-existence  of double-commands in   Sec t ion  

5.3. It i s  reasonable  to assume, therefore ,  that at most one switch 

occurs  from  time tf - t, t o  time tf, assuming scalar   control .  

Designate  the  points  lying on the  locus of zero-command  by %. The 
cont ro l  i s  u = rtN and the  system dynamics are given by 

c(t) = A ( t ) i ( t )  + B ( t )  (fN). (B1) 

The solut ion of Equation (31) can be wr i t t en  

Let  time t + tl be  the  time of the  switch  point.  Then the  switch 

point i s  given  by 
0 

and t h e   f i n a l   s t a t e  i s  wr i t ten  

X ( t f )  = 0 = q{to + t ,t + tl) x ( to  + tl) 
d o  

Now subs t i t u t e  X ( t o  + t ) from Equation (B3) into  Equation (Bh), 

assuming t i s  zero for simplici ty .  Solving for xL then  gives 
1 

0 
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X td tl 
N -  - f [ s (P(o,T)B(T)dT - s q ( o , ~ ) B ( ~ ) d ~ l ,  o s t 1 5 td 

Thus, considering r, as a funct ion of t Equation (B5) with tl 
varying  from  zero t o  td generates  the  locus of points  with minimum- 
t ime  t ra jector ies   l rhich pass t h  the o r ig in  a t  time 

1' 

td' 
A s  a spec i f ic  example, consider  the  second-order  system of Section 

5.3. For t h i s  system, 

Substituting  Equation (336) into  Equation (B5) gives 

x cost  4- 1 - 2cost 
- L = & [  d 
N s in t   -2 s in t  d 1 

Eliminating tl i n  Equation (B7) f i n a l l y   g i v e s  

as the  desired  locus of points.  The points  (e,,$) i n   t h e  phase  plane 

t h u s   l i e  on c i r cu la r   a r c s  of radius 2N and c e n t e r   ( W c o s t d ,   m s i n t d ) . .  

Note t h a t  if 5 # 0 i n   t h e  second-order  example,  the  circular  arcs would 

become arcs  of  logarithmic  spirals,   but  the  structure of the  locus would 

be  the same. 
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